如何求离散型变量的方差?
离散型随机变量的方差:
D(X) = E{[X - E(X)]^2};(1)
=E(X^2) - (EX)^2;(2)
(1)式是方差的离差表示,,如果不懂,可以记忆(2)式
(2)式表示:方差 = X^2的期望 - X的期望的平方。
X和X^2都是随机变量,针对于某次随机变量的取值,
例如: 随机变量X服从“0 - 1”:取0概率为q,取1概率为p,p+q=1 则: 对于随即变量X的期望 E(X) = 0*q + 1*p = p 同样对于随即变量X^2的期望 E(X^2) = 0^2 * q + 1^2 * p = p
相关如下:
机变量的期望,离散情形:如果X是离散随机变量,具有概率质量函数p(x),那么X的期望值定义为E[X]=
换句话说,X的期望是X可能取的值的加权平均,每个值被X取此值的概率所加权。
连续情形:也可以定义连续随机变量的期望值。如果X是具有概率密度函数f(x)的连续随机变量,那么X的期望就定义为E[X]=
=
=β+a/2。换句话说,在(a,β) 上均匀分布的随机变量的期望值正是区间的中点。
随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。