展开全部
原式=∫(-π/4,0)dx/(1+sinx)+∫(0,π/4)dx/(1+sinx)。对前一个积分令x=-t、合并即可。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
let
u=-x
du =-dx
x=-π/4 , u=π/4/4
x=0, u=0
∫(-π/4->π/4) dx/(1-sinx)
=∫(-π/4->0) dx/(1-sinx) +∫(0->π/4) dx/(1-sinx)
=∫(π/4->0) -du/(1+sinu) +∫(0->π/4) dx/(1-sinx)
=∫(0->π/4) du/(1+sinu) +∫(0->π/4) dx/(1-sinx)
=∫(0->π/4) dx/(1+sinx) +∫(0->π/4) dx/(1-sinx)
u=-x
du =-dx
x=-π/4 , u=π/4/4
x=0, u=0
∫(-π/4->π/4) dx/(1-sinx)
=∫(-π/4->0) dx/(1-sinx) +∫(0->π/4) dx/(1-sinx)
=∫(π/4->0) -du/(1+sinu) +∫(0->π/4) dx/(1-sinx)
=∫(0->π/4) du/(1+sinu) +∫(0->π/4) dx/(1-sinx)
=∫(0->π/4) dx/(1+sinx) +∫(0->π/4) dx/(1-sinx)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询