圆锥曲线知识点总结有哪些?
1个回答
展开全部
两顶点之间的线段称为双曲线的实轴,实轴长的一半称为半实轴,实轴的长度为2a(a为标准方程中的参数)。在标准方程中令x=0,得y=-b,该方程无实根,为便于作图,在y轴上画出B1(0,b)和B2(0,-b),以B1B2为虚轴。
把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a,小于|F1F2|)的轨迹称为双曲线;平面内到两定点的距离差的绝对值为定长的点的轨迹叫做双曲线。
扩展资料:
几何性质:
准线到顶点的距离为Rn/e,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。
当离心率e大于零时,则P为有限量,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。
当离心率e等于零时,则P为无限大,P是非普适量。用无限远来定义圆锥曲线是不符合常理的。
教科书中定义局限性的原因是不了解准线的几何性质,当e等于零时则准线为无限远,准线是非普适量,是局限性的量。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询