二十以内的数中,有多少个单数?多少个双数?
3个回答
展开全部
你好:
解:
在0-20这21个自然数中
单数是10个,双数是11个。
单数又叫奇数。
不能被2整除的整数叫奇数,也叫单数,如1、3、5、7、9、……。当把奇数分成若干个2时,最后不能分尽,总是要剩下一个1,如5分成两个2后剩1,9分成4个2后剩1。奇数加1或减1就变成偶数(双数)。数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示 ,奇数可用2k+1表示,这里k是整数.
1、在整数中,不能被2整除的数叫做奇数。日常生活中,人们通常把奇数叫做单数,它跟偶数是相对应的。
2、奇数可以分为:
正奇数:1、3、5、7、9.........
负奇数:-1、-3、-5、-7、-9.........
(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数。
(4)若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。
(5)n个奇数的乘积是奇数,n个偶数的乘积是偶数;顺式中有一个是偶数,则乘积是偶数,即:A*B*C*…*偶数*X*Y=偶数,式中A、B、C、…X、Y皆为整数,公式可简化为:奇数*偶数=偶数。
(6) 奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8.(0是个特殊的偶数。2002年国际数学协会规定,零为偶数.我国2004年也规定零为偶数。小学规定0为最小的偶数,但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了.)
(7)奇数的平方除以2、4、8余1
(8) 任意两个奇数的平方差是2、4、8的倍数
(9)每个奇数与二的商都余一
(10) 著名数学家毕达哥拉斯发现有趣奇数现象:将奇数连续相加,每次的得数正好是平方数。这体现在奇数和平方数之间有着密切的重要联系。如:
1 + 3=2²
1 + 3 + 5=3²
1 + 3 + 5+ 7=4²
1 + 3 + 5+ 7 + 9=5²
1 + 3 + 5+ 7 + 9 + 11=6²
1 + 3 + 5+ 7 + 9 + 11+ 13=7²
1 + 3 + 5+ 7 + 9 + 11+ 13 + 15=8²
1 + 3 + 5+ 7 + 9 + 11+ 13 + 15 + 17=9²
所有整数不是奇数(单数),就是偶数(双数)。若某数是2的倍数,它就是偶数(双数),可表示为2n;若非,它就是奇数(单数),可表示为2n+1(n为整数),即奇宴旁改数(单数)除以二的余数是一。
在十进制里,可以用看个位数的方式判定该数是奇数(单数)还是偶数(双数):个位为1,3,5,7,9的数是奇数(单数);个位为0,2,4,6,8的数是偶数(双数)。
哥德巴赫猜想说明任何大于二的偶数(双数)都可以写为两个质数之和,但尚未有人能证明这个猜想。
在中国文化里,偶有一双一对、团圆的意思。古时认为偶数(双数)好,奇数(单数)不好;所以运气不好叫做"不偶"。
整数中,能够被2整除的数,叫做偶数。
偶数包括正偶数(又称双数)、负偶数和0。
所有整数不是奇数(单数),就晌判是偶数(双数)。若某数是2的倍数,它就是偶数(双数),可表示为2n;若非,它就是奇数(单数),可表示为2n+1(n为整数),即奇数(单数)除以二的余数是一。
在十进制里,可以用看个位数的方式判定该数是奇数(单数)还是偶数(双数):个位为1,3,5,7,9的数是奇数(单数);个位为0,2,4,6,8的数是偶数(双数)。
在中国文化里,偶有一双一对、团圆的意思。古时认为偶数(双数)好,奇数(单数)不好;所以运气不好叫做“不偶”。
(1)两个连续整数中必是一个奇数一个偶数;
(2)奇数与奇数的和或差是偶数;偶数与奇数的和或差是奇数;任意多个偶数的和都是偶数;单数个奇数的和是奇数;双数个奇数的和是偶数;
(3)两个奇(偶)数的和或差是偶数;一个偶数与一个奇数的和或差一定是奇数;
( 4)除2外所有的正偶数均为合数;
(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半;
(6)奇数与奇数的积是奇数;偶数与整数的积是偶数;奇数与偶数的积是偶数;
(7) 偶数的个位一定是0、2、4、6或8;奇数的个位一定是1、3、5、7或9;
(8)任何一个奇数都不等于任何一个偶数; 若干个整数的连乘积,如果其中有一个偶数,乘积必然是偶数;
(9).偶数的平方被4整除,奇数的平方被8除余1
上述性质可通过对奇数和偶启和数的代数式进行相应运算得出
如证明:两个奇数的和为偶数.
可令两奇数k1=2n1-1; k2=2n2-1(其中n1,n2皆为整数)。
则k1+k2=(2n1-1)+(2n2-1)=2(n1+n2-1),
由于括号内的多项式n1+n2-1是整数,从而原命题得证。
解答完毕。
解:
在0-20这21个自然数中
单数是10个,双数是11个。
单数又叫奇数。
不能被2整除的整数叫奇数,也叫单数,如1、3、5、7、9、……。当把奇数分成若干个2时,最后不能分尽,总是要剩下一个1,如5分成两个2后剩1,9分成4个2后剩1。奇数加1或减1就变成偶数(双数)。数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示 ,奇数可用2k+1表示,这里k是整数.
1、在整数中,不能被2整除的数叫做奇数。日常生活中,人们通常把奇数叫做单数,它跟偶数是相对应的。
2、奇数可以分为:
正奇数:1、3、5、7、9.........
负奇数:-1、-3、-5、-7、-9.........
(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数。
(4)若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。
(5)n个奇数的乘积是奇数,n个偶数的乘积是偶数;顺式中有一个是偶数,则乘积是偶数,即:A*B*C*…*偶数*X*Y=偶数,式中A、B、C、…X、Y皆为整数,公式可简化为:奇数*偶数=偶数。
(6) 奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8.(0是个特殊的偶数。2002年国际数学协会规定,零为偶数.我国2004年也规定零为偶数。小学规定0为最小的偶数,但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了.)
(7)奇数的平方除以2、4、8余1
(8) 任意两个奇数的平方差是2、4、8的倍数
(9)每个奇数与二的商都余一
(10) 著名数学家毕达哥拉斯发现有趣奇数现象:将奇数连续相加,每次的得数正好是平方数。这体现在奇数和平方数之间有着密切的重要联系。如:
1 + 3=2²
1 + 3 + 5=3²
1 + 3 + 5+ 7=4²
1 + 3 + 5+ 7 + 9=5²
1 + 3 + 5+ 7 + 9 + 11=6²
1 + 3 + 5+ 7 + 9 + 11+ 13=7²
1 + 3 + 5+ 7 + 9 + 11+ 13 + 15=8²
1 + 3 + 5+ 7 + 9 + 11+ 13 + 15 + 17=9²
所有整数不是奇数(单数),就是偶数(双数)。若某数是2的倍数,它就是偶数(双数),可表示为2n;若非,它就是奇数(单数),可表示为2n+1(n为整数),即奇宴旁改数(单数)除以二的余数是一。
在十进制里,可以用看个位数的方式判定该数是奇数(单数)还是偶数(双数):个位为1,3,5,7,9的数是奇数(单数);个位为0,2,4,6,8的数是偶数(双数)。
哥德巴赫猜想说明任何大于二的偶数(双数)都可以写为两个质数之和,但尚未有人能证明这个猜想。
在中国文化里,偶有一双一对、团圆的意思。古时认为偶数(双数)好,奇数(单数)不好;所以运气不好叫做"不偶"。
整数中,能够被2整除的数,叫做偶数。
偶数包括正偶数(又称双数)、负偶数和0。
所有整数不是奇数(单数),就晌判是偶数(双数)。若某数是2的倍数,它就是偶数(双数),可表示为2n;若非,它就是奇数(单数),可表示为2n+1(n为整数),即奇数(单数)除以二的余数是一。
在十进制里,可以用看个位数的方式判定该数是奇数(单数)还是偶数(双数):个位为1,3,5,7,9的数是奇数(单数);个位为0,2,4,6,8的数是偶数(双数)。
在中国文化里,偶有一双一对、团圆的意思。古时认为偶数(双数)好,奇数(单数)不好;所以运气不好叫做“不偶”。
(1)两个连续整数中必是一个奇数一个偶数;
(2)奇数与奇数的和或差是偶数;偶数与奇数的和或差是奇数;任意多个偶数的和都是偶数;单数个奇数的和是奇数;双数个奇数的和是偶数;
(3)两个奇(偶)数的和或差是偶数;一个偶数与一个奇数的和或差一定是奇数;
( 4)除2外所有的正偶数均为合数;
(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半;
(6)奇数与奇数的积是奇数;偶数与整数的积是偶数;奇数与偶数的积是偶数;
(7) 偶数的个位一定是0、2、4、6或8;奇数的个位一定是1、3、5、7或9;
(8)任何一个奇数都不等于任何一个偶数; 若干个整数的连乘积,如果其中有一个偶数,乘积必然是偶数;
(9).偶数的平方被4整除,奇数的平方被8除余1
上述性质可通过对奇数和偶启和数的代数式进行相应运算得出
如证明:两个奇数的和为偶数.
可令两奇数k1=2n1-1; k2=2n2-1(其中n1,n2皆为整数)。
则k1+k2=(2n1-1)+(2n2-1)=2(n1+n2-1),
由于括号内的多项式n1+n2-1是整数,从而原命题得证。
解答完毕。
科哲生化
2024-08-26 广告
2024-08-26 广告
你说的是饮用水标准吗?引起食品不安全的微生物因素主要是其中的致病菌,产毒菌以及腐败菌等,因此菌落总数这一指标并不能恰当的反映应用水的安全情况,而应当对水中的一些具体有害微生物进行限制;取消这一指标,也是与国际标准接轨;另外对这一指标加以控制...
点击进入详情页
本回答由科哲生化提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询