1+cosx分之一的积分是多少?
1个回答
展开全部
回答如下:
1+cosx=2[cos(x/2)]^2
1/(1+cosx)=0.5[sec(x/2)]^2
∫dx/(1+cosx)
=∫0.5[sec(x/2)]^2dx
=∫[sec(x/2)]^2d0.5x
=∫dtan(x/2)
=tan(x/2)+c
积分的意义:
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询