求不定积分∫1/x√(x^2-9)dx
展开全部
设x=3sect,dx=3sect*tantdt,
cost=3/x,t=arccos(3/|x|),
tant=√[(sect)^2-1]=√(x^2/9-1)
原式=∫sect*tantdt/(|tant|*3sect)
=(1/3)∫dt
=t/3+C
=(1/3)arccos(3/|x|)+C
cost=3/x,t=arccos(3/|x|),
tant=√[(sect)^2-1]=√(x^2/9-1)
原式=∫sect*tantdt/(|tant|*3sect)
=(1/3)∫dt
=t/3+C
=(1/3)arccos(3/|x|)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询