1个回答
展开全部
这个问题,升幂就行吧。。cos2x=2(cosx)^2-1用3次。
(sin4x)/(1+cos4x)=2sin2xcos2x/[2(cos2x)^2-1+1]=sin2x/(cos2x)
后面两个同理,正好约成和第一分式一样,然后就是一直半角。
[sin2x/(cos2x)]*(cos2x)/(1+cos2x)
=sinx/cosx
[sinx/cosx])*(cosx)/(1+cosx)
=[sin(x/2)]/[cos(x/2)]
=tan(x/2)
(sin4x)/(1+cos4x)=2sin2xcos2x/[2(cos2x)^2-1+1]=sin2x/(cos2x)
后面两个同理,正好约成和第一分式一样,然后就是一直半角。
[sin2x/(cos2x)]*(cos2x)/(1+cos2x)
=sinx/cosx
[sinx/cosx])*(cosx)/(1+cosx)
=[sin(x/2)]/[cos(x/2)]
=tan(x/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询