这个不定积分如何计算?
let
(3x+6)/[(x-1)^2.(x^2+x+1)]≡A/(x-1) +B/(x-1)^2+(Cx+D)/(x^2+x+1)
=>
3x+6≡A(x-1)(x^2+x+1) +B(x^2+x+1)+(Cx+D)(x-1)^2
x=1, =>B=9/3 =3
3x+6≡A(x-1)(x^2+x+1) +B(x^2+x+1)+(Cx+D)(x-1)^2
两边求导
3≡A(x^2+x+1)+A(x-1)(2x+1) +B(2x+1)+2(Cx+D)(x-1)+C(x-1)^2
x=1
3=3A+3B
1=A+B
A+3=1
A=-2
3x+6≡A(x-1)(x^2+x+1) +B(x^2+x+1)+(Cx+D)(x-1)^2
coef. of x^3
A+C=0
-2+C=0
C=2
coef. of constant
-A+B+D =6
2+3+D=6
D=1
(3x+6)/[(x-1)^2.(x^2+x+1)]≡-2/(x-1) +3/(x-1)^2+(2x+1)/(x^2+x+1)
∫(3x+6)/[(x-1)^2.(x^2+x+1)] dx
=∫[-2/(x-1) +3/(x-1)^2+(2x+1)/(x^2+x+1)] dx
=-2ln|x-1| -3/(x-1) +∫(2x+1)/(x^2+x+1)] dx
=-2ln|x-1| -3/(x-1) +∫d(x^2+x+1)/(x^2+x+1)
=-2ln|x-1| -3/(x-1) +ln|x^2+x+1| +C