等差数列a2+a3=20.后四项和为160,Sn=300,求n
2个回答
展开全部
根据等差数列的性质,后四项和为 160,即:
A(n-3) + A(n-2) + A(n-1) + An = 160
A(n-3) + An = A(n-2) + A(n-1)
所以:
A(n-2) + A(n-1) = 160/2 = 80 ①
又:
A2 + A3 = 20 ②
① + ②,可以得到:
[A(n-2) + A3] + [A(n-1) + A3] = 100
因为 A(n-2) = A1 + (n-3) * d, A(n-1) = A1 + (n-2) * d, A2 = A1 + d, A3 = A1 + 2d
所以,上式就可以得到:
[2A1 + (n-1) * d] + [2A1 + (n-1) * d] = 100
即:2A1 + (n-1) * d = A1 + [A1 + (n-1) * d] = A1 + An = 50 ③
又因为:
Sn = (A1 + An) * n/2 = 300
把 ③ 式的结果代入,可以得到:
n = 12
A(n-3) + A(n-2) + A(n-1) + An = 160
A(n-3) + An = A(n-2) + A(n-1)
所以:
A(n-2) + A(n-1) = 160/2 = 80 ①
又:
A2 + A3 = 20 ②
① + ②,可以得到:
[A(n-2) + A3] + [A(n-1) + A3] = 100
因为 A(n-2) = A1 + (n-3) * d, A(n-1) = A1 + (n-2) * d, A2 = A1 + d, A3 = A1 + 2d
所以,上式就可以得到:
[2A1 + (n-1) * d] + [2A1 + (n-1) * d] = 100
即:2A1 + (n-1) * d = A1 + [A1 + (n-1) * d] = A1 + An = 50 ③
又因为:
Sn = (A1 + An) * n/2 = 300
把 ③ 式的结果代入,可以得到:
n = 12
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询