证明与对角线上互不相同的对角矩阵和交换的矩阵必是对角矩阵
1个回答
展开全部
证:设 B=(bij),A=diag(a1,a2,...,an),i≠j时ai≠aj.
有 AB = BA.
则
a1b11 a1b12 ...a1b1n
a2b21 a2b22 ...a2b2n
......
anbn1 anbn2 ...anbnn
=
a1b11 a2b12 ...anb1n
a1b21 a2b22 ...anb2n
......
a1bn1 a2bn2 ...anbnn
比较AB与BA第i行第j列的元素,得
aibij = ajbij
由i≠j时ai≠aj得 bij=0.
所以 B 是对角矩阵.
有 AB = BA.
则
a1b11 a1b12 ...a1b1n
a2b21 a2b22 ...a2b2n
......
anbn1 anbn2 ...anbnn
=
a1b11 a2b12 ...anb1n
a1b21 a2b22 ...anb2n
......
a1bn1 a2bn2 ...anbnn
比较AB与BA第i行第j列的元素,得
aibij = ajbij
由i≠j时ai≠aj得 bij=0.
所以 B 是对角矩阵.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询