这两个怎么求导,求大神解决 10
5个回答
展开全部
(5)
f(x) =(lnx+1)/(x+1)
f'(x)
=[(x+1)(lnx+1)'-(lnx+1).(x+1)']/(x+1)^2
=[(x+1)(1/x)-(lnx+1)(1)]/(x+1)^2
=[(x+1)-x(lnx+1)]/[x(x+1)^2]
=(1-xlnx)/[x(x+1)^2]
(6)
f(x) =ln[(1-x)/2] =ln(1-x) -ln2
f'(x)
=[1/(1-x)](1-x)'
=[1/(1-x)](-1)
=-1/(1-x)
f(x) =(lnx+1)/(x+1)
f'(x)
=[(x+1)(lnx+1)'-(lnx+1).(x+1)']/(x+1)^2
=[(x+1)(1/x)-(lnx+1)(1)]/(x+1)^2
=[(x+1)-x(lnx+1)]/[x(x+1)^2]
=(1-xlnx)/[x(x+1)^2]
(6)
f(x) =ln[(1-x)/2] =ln(1-x) -ln2
f'(x)
=[1/(1-x)](1-x)'
=[1/(1-x)](-1)
=-1/(1-x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询