高中数学直线与圆的方位置关系总结
高中数学直线与圆的方位置关系一
1、平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是利用判别式b2-4ac的符号可确定圆与直线的位置关系如下:
如果b2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b2-4ac<0,则圆与直线有0交点,即圆与直线相离。
高中数学直线与圆的方位置关系二
圆上一点的切线方程
(x-a)2+(y-b)2=r2上任意一点(X0,Y0)该点的切线方程:
(X-a)(X0-a)+(Y-b)(Y0-b)=r*2
如果在平面直角坐标系中还可以直接将
直线方程: 与圆的方程: 联立得出
若判别式>0 则该方程有两个根,即直线与圆有两个交点,相交;
若判别式=0 则该方程有一个根,即直线与圆有一个交点,相切;
若判别式<0 则该方程有零个根,即直线与圆有零个交点,相离。
高中数学直线与圆的方位置关系判断
1.如果直线方程y=kx+m,圆的方程为(x-a)2+(y-b)2=r2,将直线方程代入圆的方程,消去y,得关于x的一元二次方程Px2+Qx+R=0(P≠0),那么:
当△<0时,直线与圆没有公共点;
当△=0时,直线与圆相切;
当△>0时,直线与圆相交。
2.求出圆心到直线的距离d,半径为r
d>r,则直线与圆相离,反之相交
d=r,则直线与圆相切