sinx/x可以用牛顿莱布尼兹公式求出积分吗
3个回答
展开全部
牛顿-莱布尼茨公式可以这样来计算:一个连续函数在区间[a,b]上的定积分等于它的任何一个原函数在区间[a,b]上的增量,因此可以通过原函数来计算定积分。
原积分=∫(0到π)√[(sinx)^2-2sinxcosx+(cosx)^2]dx =∫(0到π)√(sinx-cosx)^2dx =∫(...
原积分=∫(-2到-1)x^4dx+∫(-1到1)dx+∫(1到3)x^4dx =(1/5×x^5)(x=-1)-(1/5×x^5)(x=-
牛顿-莱布尼兹公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分。
原积分=∫(0到π)√[(sinx)^2-2sinxcosx+(cosx)^2]dx =∫(0到π)√(sinx-cosx)^2dx =∫(...
原积分=∫(-2到-1)x^4dx+∫(-1到1)dx+∫(1到3)x^4dx =(1/5×x^5)(x=-1)-(1/5×x^5)(x=-
牛顿-莱布尼兹公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分。
展开全部
牛顿-莱布尼茨公式可以这样来计算:一个连续函数在区间[a,b]上的定积分等于它的任何一个原函数在区间[a,b]上的增量,因此可以通过原函数来计算定积分。
原积分=∫(0到π)√[(sinx)^2-2sinxcosx+(cosx)^2]dx =∫(0到π)√(sinx-cosx)^2dx =∫(...
原积分=∫(-2到-1)x^4dx+∫(-1到1)dx+∫(1到3)x^4dx =(1/5×x^5)(x=-1)-(1/5×x^5)(x=-
牛顿-莱布尼兹公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分。
原积分=∫(0到π)√[(sinx)^2-2sinxcosx+(cosx)^2]dx =∫(0到π)√(sinx-cosx)^2dx =∫(...
原积分=∫(-2到-1)x^4dx+∫(-1到1)dx+∫(1到3)x^4dx =(1/5×x^5)(x=-1)-(1/5×x^5)(x=-
牛顿-莱布尼兹公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不能。sinx/x的原函数不是初等函数,所以无法使用牛顿-莱布尼兹公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询