三角形的中位线定理

 我来答
咕噜咕噜的花猫
2022-12-15 · TA获得超过123个赞
知道小有建树答主
回答量:866
采纳率:100%
帮助的人:12.9万
展开全部

三角形中位线定理是:三角形的中位线平行于第三边(不与中位线接触),并且等于它的一半。

证明:如图,已知△ABC中,D,E分别是AB,AC两边中点。三角形中位线定理求证DE平行于BC且等于BC/2。

方法一:过C作AB的平行线交DE的延长线于G点。

∵CG∥AD

∴∠A=∠ACG

∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)

∴△ADE≌△CGE(A.S.A)

∴AD=CG(全等三角形对应边相等)

∵D为AB中点

∴AD=BD

∴BD=CG

又∵BD∥CG

∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)

∴DG∥BC且DG=BC

∴DE=DG/2=BC/2

∴三角形的中位线定理成立

方法二:相似法:

∵D是AB中点

∴AD:AB=1:2

∵E是AC中点

∴AE:AC=1:2

又∵∠A=∠A

∴△ADE∽△ABC

∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C

∴BC=2DE,BC∥DE

逆定理:

逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。

如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。

证明:∵DE∥BC

∴△ADE∽△ABC

∴AD:AB=AE:AC=DE:BC=1:2

∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。

逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2,三角形中位线定理。

证明:取AC中点E',连接DE',则有AD=BD,AE'=CE'

∴DE'是三角形ABC的中位线

∴DE'∥BC

又∵DE∥BC

∴DE和DE'重合(过直线外一点,有且只有一条直线与已知直线平行)

∴E是中点,DE=BC/2

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式