正比例函数的图像和性质
1个回答
展开全部
正比例函数的图像和性质如下:
1、正比例函数y=kx(k≠0)中x和y的取值均为全体实数,又因为x=0时总有y=0,所以其图象是一条过原点(0,0)的直线。
2、根据正比例函数解析式y=kx(k≠0),当x=1时,可得y=k。所以,正比例函数的图象除原点外,还过(1,k)点。
3、正比例函数y=kx(k≠0)的正比例系数k的正负(即斜率k的正负)决定着正比例函数的增减和所过的象限。
当正比例函数y=kx(k≠0)的正比例系数k>0时为增函数,其函数图象从左向右看时呈现上升趋势,并且除原点外还过一、三象限。当正比例函数y=kx(k≠0)的正比例系数k<0时为减函数,其函数图象从左向右看时呈现下降趋势,并且除原点外还过二、四象限。
4、正比例函数y=kx(k≠0)的正比例系数k的绝对值决定着正比例函数的图象的倾斜程度。
k越大时,图象与y轴的夹角就越小,图象就越“陡峭”,函数值y随自变量x变化的就越“快”。k越小时,图象与y轴的夹角就越大,图象就越“平缓”,函数值y随自变量x变化的就越“慢”。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询