二次函数的最值求解方法
二次函数的一般式是y=ax^2+bx+c,当a>0时开口向上,函数有最小值.当a<0时开口向下,则函数有最大值。而顶点坐标就是(-b/2a,4ac-b^2/4a)这个就是把a、b、c分别代入进去,求得顶点的坐标.4ac-b^2/4a就是最值。
扩展资料:
函数图象
对称关系
对于一般式:
1、y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称
2、y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称
3、y=ax2+bx+c与y=-ax2+bx+c-b2/2a关于顶点对称
4、y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)
对于顶点式:
1、y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h, k)和(-h, k)关于y轴对称,横坐标相反、纵坐标相同。
2、y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h, k)和(h, -k)关于x轴对称,横坐标相同、纵坐标相反。
3、y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h, k)和(h, k)相同,开口方向相反。
4、y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h, k)和(-h, -k)关于原点对称,横坐标、纵坐标都相反。(其实1、3、4就是对f(x)来说f(-x),-f(x),-f(-x)的情况)。