求不定积分:∫dx/(根号(x^2+2x+5))=?
1个回答
展开全部
∫dx/√(x²+2x+5)
=∫dx/√[(x+1)²+4] 【令x+1=2tan t,则dx=2sec²t dt】
=∫sect dt
=ln|sect+tant|+C
=ln|½·{x+√[(x+1)²+4]+1}|+C1
=ln|x+1+√(x²+2x+5)|+C 【C=C1+ln½】,10,求不定积分:∫dx/(根号(x^2+2x+5))=
ln(x+1+√(x^2+2x+5))+c
=∫dx/√[(x+1)²+4] 【令x+1=2tan t,则dx=2sec²t dt】
=∫sect dt
=ln|sect+tant|+C
=ln|½·{x+√[(x+1)²+4]+1}|+C1
=ln|x+1+√(x²+2x+5)|+C 【C=C1+ln½】,10,求不定积分:∫dx/(根号(x^2+2x+5))=
ln(x+1+√(x^2+2x+5))+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
TableDI
2024-07-18 广告
2024-07-18 广告
当使用VLOOKUP函数进行匹配时,如果结果返回“#N/A”错误,这通常意味着在查找表中未找到与查找值相匹配的项。可能的原因有:查找值拼写错误、查找表的范围不正确、查找值不在查找列的列、查找表未进行绝对引用导致范围变动等。为了解决这个问题,...
点击进入详情页
本回答由TableDI提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询