求cosx的原函数,怎么做?

 我来答
百度网友12a0a1f
2022-10-16 · TA获得超过2.2万个赞
知道答主
回答量:195
采纳率:100%
帮助的人:5.5万
展开全部

解题方法如下:

令x=tanα,则:√(1+x^2)

=√[1+(tanα)^2]=1/cosα, 

dx=[1/(cosα)^2]dα.

sinα=√{(sinα)^2/[(sinα)^2+(cosα)^2]}

=√{(tanα)^2/[1+(tanα)^2}

=x/√(1+x^2),

∴原式=∫{(1/cosα)[1/(cosα)^2]}dα
=∫[cosα/(cosα)^4]dα
=∫{1/[1-(sinα)^2]^2}d(sinα).

再令sinα=u,则:

原式=∫[1/(1-u^2)^2]du

=(1/4)∫[(1+u+1-u)^2/(1-u^2)^2]du

=(1/4)∫[(1+u)^2/(1-u^2)^2]du+(1/2)∫[(1-u^2)/(1-u^2)^2]du
+(1/4)∫[(1-u)^2/(1-u^2)^2]du

=(1/4)∫[1/(1-u)^2]du+(1/2)∫[1/(1-u^2)]du+(1/4)∫[1/(1+u)^2]du

=-(1/4)∫[1/(1-u)^2]d(1-u)+(1/4)∫[(1+u+1-u)/(1-u^2)]du
+(1/4)∫[1/(1+u)^2]d(1+u)

=(1/4)[1/(1-u)]-(1/4)[1/(1+u)]+(1/4)∫[1/(1-u)]du
+(1/4)∫[1/(1+u)]du

=(1/4)[1/(1-sinα)]-(1/4)[1/(1+sinα)]
-(1/4)∫[1/(1-u)]d(1-u)+(1/4)∫[1/(1+u)]d(1+u)

=(1/4){1/[1-x/√(1+x^2)]}-(1/4){1/[1+x/√(1+x^2)]}
-(1/4)ln|1-u|+(1/4)ln|1+u|+C

=(1/4)[1+x/√(1+x^2)-1+x/√(1+x^2)]/[1-x^2/(1+x^2)]
+(1/4)ln|1+sinα|-(1/4)ln|1-sinα|+C

=(1/4)[2x/√(1+x^2)]/[(1+x^2-x^2)/(1+x^2)]
+(1/4)ln[|1+x/√(1+x^2)|/|1-x/√(1+x^2)|]+C

=(1/2)x√(1+x^2)+(1/4)ln|[√(1+x^2)+x]/[√(1+x^2)-x]|+C

=(1/2)x√(1+x^2)+(1/4)ln|[√(1+x^2)+x]^2/(1+x^2-x^2)|+C

=(1/2)x√(1+x^2)+(1/2)ln|x+√(1+x^2)|+C

扩展资料:

基本定义

设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。

记作∫f(x)dx。

积分学(integral calculus)数学分析的分支学科。即研究各种积分(理论、计算和应用)以及它们之间的关系的学科。 积分学也是高等数学的基础学科之一。积分学的研究对象也是函数,其研究方法是另一类极限值的计算,牵涉到曲边形面积和体积的计算,其研究任务是积分的性质、法则和应用。同样由研究的函数是 一元和多元而分为 一元函数积分学和多元函数积分学。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式