正交向量组是如果施密特正交化的?
展开全部
施密特正交化详细计算过程是[α1,β2]=a1b1+a2b2+a3b3+a4b4,也就是两个向量的内积(点乘),代入相应的向量即可求出,例如求β2的时候,把β1和α2代入上式,运算即可算出。
由于把一个正交向量组中每个向量经过单位化,就得到一个标准正交向量组,所以,上述问题的关键是如何由一个线性无关向量组来构造出一个正交向量组,我们以3个向量组成的线性无关组为例来说明这个方法。
正交:
在三维向量空间中,两个向量的内积如果是零, 那么就说这两个向量是正交的。正交最早出现于三维空间中的向量分析。换句话说,两个向量正交意味着它们是相互垂直的。若向量α与β正交,则记为α⊥β。
对于一般的希尔伯特空间,也有内积的概念,所以人们也可以按照上面的方式定义正交的概念。特别的,我们有n维欧氏空间中的正交概念,这是最直接的推广。
和正交有关的数学概念非常多,比如正交矩阵,正交补空间,施密特正交化法,最小二乘法等等。另外在此补充正交函数系的定义:在三角函数系中任何不同的两个函数的乘积在区间[-π,π]上的积分等于0,则称这样的三角函数组成的体系叫正交函数系。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询