函数极限的局部保号性证明
1个回答
2022-12-22 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
设函数为 f(x),若其在x0处有极限,且有f(x0)>0, \r\n 那么根据定义,对任意的ε>0,存在δ>0, 满足 |f(x)-f(x0)|<ε, \r\n 即有 f(x0)-ε0,则可找到一个区间上恒有f(x)>0;f(x0)<0时同样成立;f(x0)=0不存在保号性。并且只能推出局部保号性,因为f(x0)>0肯定不能说明对所有的x f(x)>0.
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |