函数极限的局部保号性证明

 我来答
惠企百科
2022-12-22 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部
设函数为 f(x),若其在x0处有极限,且有f(x0)>0, \r\n 那么根据定义,对任意的ε>0,存在δ>0, 满足 |f(x)-f(x0)|<ε, \r\n 即有 f(x0)-ε0,则可找到一个区间上恒有f(x)>0;f(x0)<0时同样成立;f(x0)=0不存在保号性。并且只能推出局部保号性,因为f(x0)>0肯定不能说明对所有的x f(x)>0.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式