什么是二阶微分方程的通解呢?

 我来答
枫方瞎3993
2023-01-02 · TA获得超过495个赞
知道小有建树答主
回答量:270
采纳率:100%
帮助的人:64.2万
展开全部

二阶齐次微分方程的通解是:y=e^(αx)(C1cos(βx)+C2*sin(βx))。二阶常系数齐次线性微分方程一般形式为:y"+py’+qy=0 ,其中p,q为常数。以r^k代替上式中的y(k)(k=0,1,2) ,得一代数方程:r²+pr+q=0,这方程称为微分方程的特征方程,按特征根的情况,可直接写出方程的通解。

特征方程的几种情况:

(1)特征方程有两个不相等的实数根,r1≠r2,则1-1的通解为:y=C1e(r1x)+C2*e(r2x)。

(2)特征方程有两个相等的实数根,r1=r2=r,方程1-1的通解为:y=(C1+C2x)e^(rx)。

(3)特征方程有一对共轭复根,通解为:y=e^(αx)(C1cos(βx)+C2*sin(βx))。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式