如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说...
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由. (具体过程)
快快快快快 ,要数字那种 ,不要用文字说那种
第二题:在平面直角坐标系中A(-4,0)B(1,0)以AB为直径的圆交y轴与C(0,2)过点C作圆的切线交X的正版轴与D求D的坐标 展开
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由. (具体过程)
快快快快快 ,要数字那种 ,不要用文字说那种
第二题:在平面直角坐标系中A(-4,0)B(1,0)以AB为直径的圆交y轴与C(0,2)过点C作圆的切线交X的正版轴与D求D的坐标 展开
5个回答
展开全部
(1)由于OB是由OA顺时针旋转120度而成,所以OB=OA=2,∠BOy=120-90=30度,∠BOx=60度,则根据横纵坐标的定义,可求得Xb=2*cos60 =1,Yb=2*sin60 =√3
故B坐标为(1,√3)
(2)因为抛物线过原点,所以可设抛物线解析式为y=ax^2+bx,把抛物线过A(-2,0),B(2,√3)的条件代入解析式,可解得a=√3/3,b=2√3/3,所以抛物线解析式为y=√3x^2/3 + 2√3x/3
(3)若使△BOC的周长最小,由于BO长度已定,故只需使BC+CO的长度最短就行,由抛物线解析式可得对称轴为x=-1,又因为A(-2,0),O(0,0)点均在抛物线上,且它们关于直线x=-1对称,所以AC=OC,于是问题转化为使BC+AC的长度最短,C点在直线x=-1上移动,通过图像可以观察到,当C点切好处在AB上的时候,根据三角形任意两边之和大于第三边的原理,可判断出此时的AC+CB=AB长度最短,此时C点的坐标可通过求出直线AB的方程后与直线x=-1相交求得,AB的直线方程可根据两点式求得为y=√3x/3 +2√3/3,令x=-1,得出Yc=√3/3,故满足三角形BOC周长最小的C点坐标为(-1,√3/3)
(4)△PAB的面积可表示为1/2 *AB *PE(E为过P向AB引的垂线的垂足),由于AB长度固定,可求出是2√3,所以只需求出PE的最大值即可获得△PAB的最大面积
通过观察图像可得出以下结论,当过P点且相切于抛物线的直线斜率与直线AB的斜率相等时,此时的PE最大,设P的横坐标为Xp,则抛物线的切线的斜率可通过对抛物线方程求导取得(如果楼主没学过导数,请看最后一段的补充说明!),为y=2√3x/3 +2√3,所以过P点的切线斜率为2√3Xp/3 +2√3,令其等于AB的斜率√3/3,可解得Xp=-1/2, 代入到抛物线解析式可求得P点坐标为(-1/2,-√3/4),直线PE的斜率是AB斜率的负的倒数分之一,可求得为-√3,再将P点坐标代入可得PE的方程为y=-√3x-3√3/4,它与AB的交点E可通过联立AB的解析式得出是(-17/16,5√3/16),所以PE通过联立P、E两点的坐标求得为9/8,所以△PAB最大面积为1/2 * 9/8 * 2√3=9√3/8
第4问我取了点巧,用导数求更加一目了然,避免了一些繁琐的计算,但是如果楼主还没有学过导数的话,那么我大概说一下别的做法
要使PE达到最大,可设直线束的斜率为AB的斜率即为固定,当此直线束中的一条切好与抛物线相切时,从图像上能得出此时的PE也就是AB与切线这两条平行线的距离最大的结论,那么可将此切线的方程与抛物线方程联立起来,令其有且只有一个解,由于切线方程斜率已知,此时切线方程只有一个未知数纵截距,通过二次方程满足有且只有一个解这个条件可得出唯一的纵截距值,且同时求出切点即P的坐标,之后的求解过程同上所述
故B坐标为(1,√3)
(2)因为抛物线过原点,所以可设抛物线解析式为y=ax^2+bx,把抛物线过A(-2,0),B(2,√3)的条件代入解析式,可解得a=√3/3,b=2√3/3,所以抛物线解析式为y=√3x^2/3 + 2√3x/3
(3)若使△BOC的周长最小,由于BO长度已定,故只需使BC+CO的长度最短就行,由抛物线解析式可得对称轴为x=-1,又因为A(-2,0),O(0,0)点均在抛物线上,且它们关于直线x=-1对称,所以AC=OC,于是问题转化为使BC+AC的长度最短,C点在直线x=-1上移动,通过图像可以观察到,当C点切好处在AB上的时候,根据三角形任意两边之和大于第三边的原理,可判断出此时的AC+CB=AB长度最短,此时C点的坐标可通过求出直线AB的方程后与直线x=-1相交求得,AB的直线方程可根据两点式求得为y=√3x/3 +2√3/3,令x=-1,得出Yc=√3/3,故满足三角形BOC周长最小的C点坐标为(-1,√3/3)
(4)△PAB的面积可表示为1/2 *AB *PE(E为过P向AB引的垂线的垂足),由于AB长度固定,可求出是2√3,所以只需求出PE的最大值即可获得△PAB的最大面积
通过观察图像可得出以下结论,当过P点且相切于抛物线的直线斜率与直线AB的斜率相等时,此时的PE最大,设P的横坐标为Xp,则抛物线的切线的斜率可通过对抛物线方程求导取得(如果楼主没学过导数,请看最后一段的补充说明!),为y=2√3x/3 +2√3,所以过P点的切线斜率为2√3Xp/3 +2√3,令其等于AB的斜率√3/3,可解得Xp=-1/2, 代入到抛物线解析式可求得P点坐标为(-1/2,-√3/4),直线PE的斜率是AB斜率的负的倒数分之一,可求得为-√3,再将P点坐标代入可得PE的方程为y=-√3x-3√3/4,它与AB的交点E可通过联立AB的解析式得出是(-17/16,5√3/16),所以PE通过联立P、E两点的坐标求得为9/8,所以△PAB最大面积为1/2 * 9/8 * 2√3=9√3/8
第4问我取了点巧,用导数求更加一目了然,避免了一些繁琐的计算,但是如果楼主还没有学过导数的话,那么我大概说一下别的做法
要使PE达到最大,可设直线束的斜率为AB的斜率即为固定,当此直线束中的一条切好与抛物线相切时,从图像上能得出此时的PE也就是AB与切线这两条平行线的距离最大的结论,那么可将此切线的方程与抛物线方程联立起来,令其有且只有一个解,由于切线方程斜率已知,此时切线方程只有一个未知数纵截距,通过二次方程满足有且只有一个解这个条件可得出唯一的纵截距值,且同时求出切点即P的坐标,之后的求解过程同上所述
展开全部
解:
(1)点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB,所以OB=OA=2,过B点作BD垂直X轴于D,依题意有角AOB=120°,所以角BOD=60°,则OD=1,BD=根号3,即点B的坐标为(1,根号3)。
(2)设经过A、O、B三点的抛物线的解析式为y=ax^2+bx+c,把A、O、B三点代入,求得a=根号3/3,b=2根号3/3,c=0,所以经过A、O、B三点的抛物线的解析式为y=(3根号3)x^2/3+(2根号3)x/3。
(3)y=(3根号3)x^2/3+(2根号3)x/3化为y=(3根号3)(x+1)^2/3-(2根号3)/3。所以抛物线的对称为
x=-1,因为A点和O点是关于抛物线对称轴对称的点,连接AB交抛物线对称轴于C,所以点C即为所求。AB的解析式可求得为y=根号3x/3+(2根号3)/3,把x=-1代入,求得y=根号3/3,所以点C的坐标为(-1,根号3/3)。
(4)连接PA、PB,过P作PF垂直X轴于点F交AB于E,设P(x,(3根号3)x^2/3+(2根号3)x/3),E为(x,根号3x/3+(2根号3)/3),EP=根号3x/3+(2根号3)/3-[(3根号3)x^2/3+(2根号3)x/3]=-(根号3/3)(x+1/2)^2+11根号3/12,则S△PAB=S△PAE+S△ABE
=0.5*AF*EP+0.5*DE*EP=0.5*3*EP=3EP/2
=-3(根号3/6)(x+1/2)^2+33根号3/24
所以当x=-1/2时,△PAB是否有最大面积33根号3/24,此时求得点P的坐标为(-1/2,-根号3/4)
(1)点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB,所以OB=OA=2,过B点作BD垂直X轴于D,依题意有角AOB=120°,所以角BOD=60°,则OD=1,BD=根号3,即点B的坐标为(1,根号3)。
(2)设经过A、O、B三点的抛物线的解析式为y=ax^2+bx+c,把A、O、B三点代入,求得a=根号3/3,b=2根号3/3,c=0,所以经过A、O、B三点的抛物线的解析式为y=(3根号3)x^2/3+(2根号3)x/3。
(3)y=(3根号3)x^2/3+(2根号3)x/3化为y=(3根号3)(x+1)^2/3-(2根号3)/3。所以抛物线的对称为
x=-1,因为A点和O点是关于抛物线对称轴对称的点,连接AB交抛物线对称轴于C,所以点C即为所求。AB的解析式可求得为y=根号3x/3+(2根号3)/3,把x=-1代入,求得y=根号3/3,所以点C的坐标为(-1,根号3/3)。
(4)连接PA、PB,过P作PF垂直X轴于点F交AB于E,设P(x,(3根号3)x^2/3+(2根号3)x/3),E为(x,根号3x/3+(2根号3)/3),EP=根号3x/3+(2根号3)/3-[(3根号3)x^2/3+(2根号3)x/3]=-(根号3/3)(x+1/2)^2+11根号3/12,则S△PAB=S△PAE+S△ABE
=0.5*AF*EP+0.5*DE*EP=0.5*3*EP=3EP/2
=-3(根号3/6)(x+1/2)^2+33根号3/24
所以当x=-1/2时,△PAB是否有最大面积33根号3/24,此时求得点P的坐标为(-1/2,-根号3/4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)过B作BD⊥x轴于D
∵A(-2,0),
∴OA=OB=2
Rt△OBD中,∠BOD=60°,OB=2,
∴∠OBD=30°,
∴OD=1,BD=
3
故B(1,√3
∵A(-2,0),
∴OA=OB=2
Rt△OBD中,∠BOD=60°,OB=2,
∴∠OBD=30°,
∴OD=1,BD=
3
故B(1,√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询