为什么特征多项式相等,特征值就一定相等?

 我来答
刺任芹O
2022-11-17 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:9013万
展开全部

因为特征值是特征多项式的根,因此若特征多项式相等,特征值必然相等。

特征多项式是一个方程,同一个方程解出来的特征值一样。

两个矩阵的特征值相等的时候不一定相似

但当这两个矩阵是实对称矩阵时, 有相同的特征值必相似

比如当矩阵A与B的特征值相同,A可对角化,但B不可以对角化时,A和B就不相似

比如如下两个矩阵

1 0 1 1

0 1和 0 1

显然它们的特征值都是1,1

但是不能对角化

因为1 1 不能找到两个线性无关的特征向量

扩展资料

特征向量对应的特征值是它所乘的那个缩放因子。

特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。

线性变换的主特征向量是最大特征值对应的特征向量。

特征值的几何重次是相应特征空间的维数。

有限维向量空间上的一个线性变换的谱是其所有特征值的集合。

例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。

一个向量(或函数)被矩阵相乘,表示对这个向量做了一个线性变换。如果变换后还是这个向量本身乘以一个常数,这个常数就叫特征值。这是特征值的数学涵义;

至于特征值的物理涵义,根据具体情况有不同的解释。比如动力学中的频率,稳定分析中的极限荷载,甚至应力分析中的主应力。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式