设线性方程组x1+x2-2x3=0,3x1+2x3+ax3=1,x1-x2-6x3=2b,讨论ab为?

 我来答
大沈他次苹0B
2022-10-17 · TA获得超过7537个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:220万
展开全部
原方程的增广矩阵为
1 1 -2 0
3 2 a 1
1 -1 -6 2b
=>
1 1 -2 0
0 -1 a+6 1
0 -2 -4 2b
=>
1 1 -2 0
0 -1 a+6 1
0 1 2 -b
=>
1 0 -4 b
0 0 a+8 1-b
0 1 2 -b
当a=-8时,若b不等于1,无解
若b=1,则x1=1+4x3,x2=-1-2x3,无穷多解
当a不等于-8时,x3=(1-b)/(a+8)
x1=b+4(1-b)/(a+8),x2=-b-2(1-b)/(a+8),有唯一解,1,设线性方程组x1+x2-2x3=0,3x1+2x3+ax3=1,x1-x2-6x3=2b,讨论ab为
方程无解,有解,当有无穷多借时,求出通解.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式