函数表达式转换极坐标怎么转
函数表达式转换极坐标的通式为:设函数表达是f(x,y)=0,则将x=ρcosθ,y=ρsinθ,代入到函数表达式中,化简得到关于ρ、θ的方程,即为极坐标方程。
例如x^2+y^2=4,将x=ρcosθ,y=ρsinθ,代入到函数表达式中,得到ρ=2。
在平面内取一个定点O,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向。对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。
扩展资料:
极坐标方程经常会表现出不同的对称形式,如果ρ(−θ)= ρ(θ),则曲线关于极点(0°/180°)对称,如果ρ(π-θ)= ρ(θ),则曲线关于极点(90°/270°)对称,如果ρ(θ−α)= ρ(θ),则曲线相当于从极点逆时针方向旋转α°。
极坐标系也有两个坐标轴:r(半径坐标)和θ(角坐标、极角或方位角,有时也表示为φ或t)。r坐标表示与极点的距离,θ坐标表示按逆时针方向坐标距离0°射线(有时也称作极轴)的角度,极轴就是在平面直角坐标系中的x轴正方向。
比如,极坐标中的(3,60°)表示了一个距离极点3个单位长度、和极轴夹角为60°的点。(−3,240°) 和(3,60°)表示了同一点,因为该点的半径为在夹角射线反向延长线上距离极点3个单位长度的地方(240° − 180° = 60°)。
参考资料来源:百度百科——极坐标