求大神帮忙解一下这道导数题!非常感谢!
2个回答
展开全部
复合函数求导,由外向内,逐步求导。
y'=e^[-sin²(1/x)]·[-sin²(1/x)]'
=e^[-sin²(1/x)]·[-2sin(1/x)]·[sin(1/x)]'
=e^[-sin²(1/x)]·[-2sin(1/x)]·cos(1/x)·(1/x)'
=e^[-sin²(1/x)]·[-2sin(1/x)]·cos(1/x)·(-1/x²)
=e^[-sin²(1/x)]·[2sin(1/x)]·cos(1/x)·(1/x²)
=e^[-sin²(1/x)]·sin(2/x) /x²
y'=e^[-sin²(1/x)]·[-sin²(1/x)]'
=e^[-sin²(1/x)]·[-2sin(1/x)]·[sin(1/x)]'
=e^[-sin²(1/x)]·[-2sin(1/x)]·cos(1/x)·(1/x)'
=e^[-sin²(1/x)]·[-2sin(1/x)]·cos(1/x)·(-1/x²)
=e^[-sin²(1/x)]·[2sin(1/x)]·cos(1/x)·(1/x²)
=e^[-sin²(1/x)]·sin(2/x) /x²
追问
谢谢
2016-03-02
展开全部
y = e^[-sin²(1/x)]
y ′ = e^[-sin²(1/x)] * [-sin²(1/x)] ′
= e^[-sin²(1/x)] * [-2sin(1/x)] * [sin(1/x)] ′
= e^[-sin²(1/x)] * [-2sin(1/x)] * [cos(1/x)] * (1/x)′
= e^[-sin²(1/x)] * [-2sin(1/x)] * [cos(1/x)] * (-1/x²)
= sin(2/x) * e^[-sin²(1/x)] / x²
y ′ = e^[-sin²(1/x)] * [-sin²(1/x)] ′
= e^[-sin²(1/x)] * [-2sin(1/x)] * [sin(1/x)] ′
= e^[-sin²(1/x)] * [-2sin(1/x)] * [cos(1/x)] * (1/x)′
= e^[-sin²(1/x)] * [-2sin(1/x)] * [cos(1/x)] * (-1/x²)
= sin(2/x) * e^[-sin²(1/x)] / x²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询