y=(lnx)/x图象如图:
由反函数的性质可知y=exp(x)是定义在R上的单调递增并且处处连续、可微的函数,其值域为(0,+∞)。由于exp(x)求导后得到它自身并且exp(0)=1,可不断地重复该步骤,通过幂级数的知识可知exp(x)能在R上展开成麦克劳林级数。
扩展资料:
将对数加以改造使之广泛流传的是纳皮尔的朋友布里格斯(H. Briggs,1561~1631),他通过研究《奇妙的对数定律说明书》,感到其中的对数用起来很不方便。
于是与纳皮尔商定,使1的对数为0,10的对数为1,这样就得到了以10为底的常用对数。由于所用的数系是十进制,因此它在数值上计算具有优越性。