实数的定义域是什么?

 我来答
暴走爱生活55
高能答主

2023-07-10 · 我是生活小达人,乐于助人就是我
暴走爱生活55
采纳数:4157 获赞数:1692657

向TA提问 私信TA
展开全部

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

扩展资料:

一、发展历史

在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。 直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。1871年,德国数学家康托尔第一次提出了实数的严格定义。

根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。以边长为1厘米的正方形为例,其对角线有多长?在规定的精度下(比如误差小于0.001厘米),总可以用有理数来表示足够精确的测量结果(比如1.414厘米)。

但是,古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念,他们原以为:

任何两条线段(的长度)的比,可以用自然数的比来表示。

二、相关性质

1、封闭性

实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。

2、有序性

实数集是有序的,即任意两个实数a、b必定满足并且只满足下列三个关系之一:a<b,a>b,a=b。

3、传递性

实数大小具有传递性,即若a>b,且b>c,则有a>b。

4、稠密性

R实数集具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数。

参考资料来源:百度百科-实数

独看黎明
2023-07-11 · 超过32用户采纳过TA的回答
知道答主
回答量:173
采纳率:100%
帮助的人:3.3万
展开全部
实数的定义域是整个实数集。实数是包括有理数和无理数的集合,它包括所有的有限小数和无限循环小数,以及无法用有限小数或无限循环小数表示的无理数,如根号2、π等。实数集包括正数、负数和零,它们构成了实数轴上的所有点。实数的定义域没有上界或下界,它是一个无限的连续集合。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式