怎么用数学归纳法证明等式

 我来答
crs0723
2023-07-01 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.6万
采纳率:85%
帮助的人:4481万
展开全部
求证:a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+a^(n-3)b^2+...+b^(n-1)]
证明:用数学归纳法
当n=1时,左边=a-b=右边,成立
假设当n=k时,a^k-b^k=(a-b)[a^(k-1)+a^(k-2)b+a^(k-3)b^2+...+b^(k-1)]
当n=k+1时,a^(k+1)-b^(k+1)=a^(k+1)-ab^k+ab^k-b^(k+1)
=a(a^k-b^k)+(a-b)b^k
=(a-b)[a^k+a^(k-1)b+a^(k-2)b^2+...+ab^(k-1)]+(a-b)b^k
=(a-b)[a^k+a^(k-1)b+a^(k-2)b^2+...+ab^(k-1)+b^k]
成立
原题得证
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式