怎样求一个函数的反函数有没有什么窍门啊
反函数也是函数,一般用x表示自变量,y表示函数。
反函数的求法“三步骤”:
1、求原函数的定义域,y>1,以备作反函数的定义域;
2、从y=2^x +1中解出x=log2(y-1);
3、x与y互换,得反函数:y=log2(x-1)。
扩展资料:
反函数性质:
1、函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
2、一个函数与它的反函数在相应区间上单调性一致;
3、大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。
奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
4、一段连续的函数的单调性在对应区间内具有一致性;
5、严增(减)的函数一定有严格增(减)的反函数;
6、反函数是相互的且具有唯一性;
7、定义域、值域相反对应法则互逆(三反);
8、反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f'(y)≠0,那么它的反函数y=f-1(x)在区间S={x|x=f(y),y∈I }内也可导,且:
首先看这个函数是不是单调函数,如果不是则反函数不存在
如果是单调函数,则只要把x和y互换,然后解出y即可。
例如 y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
扩展资料
设函数y=f(x)的定义域是D,值域是f(D)。如果对于值域f(D)中的每一个y,在D中有且只有一个x使得f(y)=x,则按此对应法则得到了一个定义在f(D)上的函数,并把该函数称为函数y=f(x)的反函数,记为
由该定义可以很快得出函数f的定义域D和值域f(D)恰好就是反函数f-1的值域和定义域,并且f-1的反函数就是f,也就是说,函数f和f-1互为反函数,即:
一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。反函数y=f ^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f (y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。
参考资料百度百科-反函数
1,从反函数的定义可以看出,求反函数是一件很繁琐的事情。即使有快捷方法,其时间效益也会被求值域抵消掉。
类似反锁的数学题目,还有很多。
2,求解步骤
2.1 先求y=f(x)的值域D
2.2 解关于x的方程(将y视作常数)
结果:x=g(y)
2.3 将x=g(y)中的x和y互换,
得到y=g(x)
2.4 将D视作y=g(x)的定义域
2.5 y=g(x)(x∈D)即为所求
完毕
广告 您可能关注的内容 |