展开全部
1定义:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。
2产生增根的来源:
(1)分式方程
(2)无理方程
3分式方程增根介绍:
在分式方程化为整式方程的过程中,若整式方程的根使最简公分母为0,那么这个根叫做原分式方程的
X-2 16 X+2
—— - —— = ——
X+2 X^2-4 X-2
解: (X-2)^2-16=(X+2)^2
X^2-4X+4-16=X^2+4X+4
X^2-4X-X^2-4X=4+16-4
-8X=16
X=-2
但是X=-2使X+2和X^2-4等于0,所以X=-2是增根
分式方程两边都乘以最简公分母化分式方程为整公分母的值不为0,则此解是分时方程的解,若最简公分母的值为0,则此解是增根。
例如: 设方程 A(x)=0 是(x)=0 的根,称 x=a 是方程的增根;如果x=b 是方程B(x)=0 的根但不是A(x)=0 的根,称x=b 是方程B(x)=0 的失根.
如何求增根
解分式方程时什么根,往往是由于违反了方程的同解原理或对方程变形时粗心大意造成的。
1. 如果不遵从同解原理,即使解整式方程也可能出现增根.例如将方程x-2=0的两边都乘x,变形成x(x-2)=0,方程两边所乘的最简公分母,看其是否为0,是0即为增根。
2产生增根的来源:
(1)分式方程
(2)无理方程
3分式方程增根介绍:
在分式方程化为整式方程的过程中,若整式方程的根使最简公分母为0,那么这个根叫做原分式方程的
X-2 16 X+2
—— - —— = ——
X+2 X^2-4 X-2
解: (X-2)^2-16=(X+2)^2
X^2-4X+4-16=X^2+4X+4
X^2-4X-X^2-4X=4+16-4
-8X=16
X=-2
但是X=-2使X+2和X^2-4等于0,所以X=-2是增根
分式方程两边都乘以最简公分母化分式方程为整公分母的值不为0,则此解是分时方程的解,若最简公分母的值为0,则此解是增根。
例如: 设方程 A(x)=0 是(x)=0 的根,称 x=a 是方程的增根;如果x=b 是方程B(x)=0 的根但不是A(x)=0 的根,称x=b 是方程B(x)=0 的失根.
如何求增根
解分式方程时什么根,往往是由于违反了方程的同解原理或对方程变形时粗心大意造成的。
1. 如果不遵从同解原理,即使解整式方程也可能出现增根.例如将方程x-2=0的两边都乘x,变形成x(x-2)=0,方程两边所乘的最简公分母,看其是否为0,是0即为增根。
参考资料: http://baike.baidu.com/view/793528.htm?fr=ala0_1
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询