1/x积分为什么不加绝对值,常微分方程那一章
展开全部
高数中说∫ 1/x dx = ln|x|+C,是为了算负数部分的积分值方便,但事实上写成 lnx 也能算负数。
学过复变就知道,对a>0,ln(-a)= lna + iπ ,取主值。这样从 -b 到 -a 积分,做 ln 上下限的减法刚好抵消掉 iπ,结果和 ln|x| 算的一样。
如果积分∫ 1/x dx 的上下限为复数,那情况比较复杂。一般是算给定积分路径的端点的 lnx 函数值差。这里当然不能取绝对值(模),要用复变量的ln函数,而且由于 ln 的多值性,自变量辐角还要根据路径连续改变。
扩展资料
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
以下是我的理解。
高数中说∫ 1/x dx = ln|x|+C,是为了算负数部分的积分值方便,但事实上写成 lnx 也能算负数。
学过复变就知道,对a>0,ln(-a)= lna + iπ ,取主值。这样从 -b 到 -a 积分,做 ln 上下限的减法刚好抵消掉 iπ,结果和 ln|x| 算的一样。
如果积分∫ 1/x dx 的上下限为复数,那情况比较复杂。一般是算给定积分路径的端点的 lnx 函数值差。这里当然不能取绝对值(模),要用复变量的ln函数,而且由于 ln 的多值性,自变量辐角还要根据路径连续改变。
总之那个绝对值符号在x为实数时本身就可有可无,为了让没学过复变的人理解才加了个绝对值。当x可以取复数时,加了绝对值反而是错的。所以我从来不加。
高数中说∫ 1/x dx = ln|x|+C,是为了算负数部分的积分值方便,但事实上写成 lnx 也能算负数。
学过复变就知道,对a>0,ln(-a)= lna + iπ ,取主值。这样从 -b 到 -a 积分,做 ln 上下限的减法刚好抵消掉 iπ,结果和 ln|x| 算的一样。
如果积分∫ 1/x dx 的上下限为复数,那情况比较复杂。一般是算给定积分路径的端点的 lnx 函数值差。这里当然不能取绝对值(模),要用复变量的ln函数,而且由于 ln 的多值性,自变量辐角还要根据路径连续改变。
总之那个绝对值符号在x为实数时本身就可有可无,为了让没学过复变的人理解才加了个绝对值。当x可以取复数时,加了绝对值反而是错的。所以我从来不加。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |