简述真实孔径雷达和合成孔径雷达的区别
RAR真实孔径雷达是单个雷达,SAR合成孔径雷达是指雷达移动,目标固定不动。RAR和SAR的概念就完全不一样。
1、植被覆盖度(VFC):植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比,基于像元二分模型计算,假定由由植被覆盖地表和无植被覆盖地表构成一个像元,基于像元二分模型的混合像元法可以利用两个参数削弱大气。
土壤背景和植被类型的影响。VFC=(NDVI-NDVIsoil)/(NDVIveg-NDVIsoil)NDVIsoil为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg则代表完全被植被所覆盖的像元的NDVI值。
即纯植被像元的NDVI值,Soil和lveg值受大气、地表湿度、太阳光、植被类型的影响,所以不能取影像NDVI的最大值和最小值,而应该取置信度区间内的最大值和最小值。
2、植被覆盖度计算过程:首先计算NDVI,使用TM3和4波段计算归一化植被指数,突出显示植被部分(输出后图像高亮的部分就是植被区域)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等。
正值,表示有植被覆盖,且随覆盖度增大而增大;NDVI=(近红外-红)/(近红外+红)=(TM4-TM3)/(TM3+TM4),若TM34都是0,则NDVI为-1,然后根据置信区间计算NDVIveg和NDVIsoil,接着计算植被覆盖度。
3、各种植被指数:NDVI可以指示植被生长状况和覆盖度,根据地物光谱信息推算地表的植被状况定量值。RVI比值植被指数可以监测和估算生物量,PVI垂直植被指数可以消除土壤背景与GVI物理意义相同,GVI绿度植被指数是各波段辐射亮度的加权和,使得植被和土壤的光谱特性分离。
4、反演植被覆盖度方法:如植被指数法、像元分解模型法、决策树分类法、经验模型法,经验模型法受观测条件、局限性大,植被指数法估算精度低,像元分解法所依据的原理需要进一步考证、决策树需要大量实测数据。
工作量大,属于定量遥感范畴,提升估测精度。目前没有较好的分割算法,制约了变化检测方法发展,对植被覆盖度变化监测可以提高不同地物间的类间可分性,采用多尺度、多源数据融合监测。
2022-08-01 广告
二十世纪五十年代,为了提高目标的方位分辨力,需要天线发射非常窄的波束,如记载X波段雷达的叫分辨力很难小于2°,所以科学家想到一根很长的线阵天线之所以能有高的方位分。