已知数列{An}满足A1=2,An+1=2-1/An,n=1,2,3,4,..
1个回答
展开全部
(1)
a(n+1) = 2- 1/an
= (2an -1)/an
a(n+1) -1 = (2an -1)/an -1
= (an -1)/an
1/[a(n+1) -1] = an/(an -1)
= 1 + 1/(an -1)
1/[a(n+1) -1] - 1/(an -1) =1
{1/(an -1) } 是等差数列, d=1
1/(an -1) - 1/(a1 -1)= n-1
1/(an -1) = n
an = 1/n +1
= (n+1)/n
(2)
a(i+1)/ai = i(i+2)/(i+1)^2
= 1 - 1/(i+1)^2
∑(i:1->n) a(i+1)/ai
=∑(i:1->n) [1 - 1/(i+1)^2]
= n - ∑(i:1->n) 1/(i+1)^2
>n - lim(n-> ∞)∑(i:1->n) 1/(i+1)^2
= n - 1/4 -lim(n-> ∞)∑(i:2->n) 1/(i+1)^2
> n- 1/4 - lim(n-> ∞)∑(i:2->n) 1/[i(i+1)]
=n- 1/4 - lim(n-> ∞)∑(i:2->n)[ 1/i - 1/(i+1)]
=n- 1/4 - lim(n-> ∞)[1/2 - 1/(i+1)]
= n -1/4 -1/2
= n- 3/4
a(n+1) = 2- 1/an
= (2an -1)/an
a(n+1) -1 = (2an -1)/an -1
= (an -1)/an
1/[a(n+1) -1] = an/(an -1)
= 1 + 1/(an -1)
1/[a(n+1) -1] - 1/(an -1) =1
{1/(an -1) } 是等差数列, d=1
1/(an -1) - 1/(a1 -1)= n-1
1/(an -1) = n
an = 1/n +1
= (n+1)/n
(2)
a(i+1)/ai = i(i+2)/(i+1)^2
= 1 - 1/(i+1)^2
∑(i:1->n) a(i+1)/ai
=∑(i:1->n) [1 - 1/(i+1)^2]
= n - ∑(i:1->n) 1/(i+1)^2
>n - lim(n-> ∞)∑(i:1->n) 1/(i+1)^2
= n - 1/4 -lim(n-> ∞)∑(i:2->n) 1/(i+1)^2
> n- 1/4 - lim(n-> ∞)∑(i:2->n) 1/[i(i+1)]
=n- 1/4 - lim(n-> ∞)∑(i:2->n)[ 1/i - 1/(i+1)]
=n- 1/4 - lim(n-> ∞)[1/2 - 1/(i+1)]
= n -1/4 -1/2
= n- 3/4
追问
第2问看不懂..求解释
追答
a(i+1)/ai = i(i+2)/(i+1)^2
= 1 - 1/(i+1)^2
∑(i:1->n) a(i+1)/ai
=∑(i:1->n) [1 - 1/(i+1)^2]
= n - ∑(i:1->n) 1/(i+1)^2
>n - lim(n-> ∞)∑(i:1->n) 1/(i+1)^2 (lim(n-> ∞)∑(i:1->n) 1/(i+1)^2 > ∑(i:1->n) 1/(i+1)^2)
= n - 1/4 -lim(n-> ∞)∑(i:2->n) 1/(i+1)^2
(lim(n-> ∞)∑(i:1->n) 1/(i+1)^2 = 1/4 -lim(n-> ∞)∑(i:2->n) 1/(i+1)^2
> n- 1/4 - lim(n-> ∞)∑(i:2->n) 1/[i(i+1)] ( 1/(i+1)^2 ∞)∑(i:2->n)[ 1/i - 1/(i+1)]
=n- 1/4 - lim(n-> ∞)[1/2 - 1/(i+1)]
= n -1/4 -1/2
= n- 3/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询