4个回答
展开全部
解:(1)原式=1/2∫(1,2)d(2x-1)/(2x-1)
=(1/2ln|2x-1|)|(1,2)
=1/2(ln3-0)
=1/2ln3
(2)∵∫(0,1)(2x+k)dx=(x²+kx)|(0,1)=1+k
又∫(0,1)(2x+k)dx=2
∴1+k=2
故k=1
(3)原式=∫(0,1)2t²dt/(t²+1)
(用t=√(e^x-1)代换)
=2∫(0,1)[1-1/(t²+1)]dt
=2(t-arctant)|(0,1)
=2(1-π/4)
=2-π/2
(4)原式=∫(a,x)f(t+a)d(t+a)
=∫(2a,x+a)f(u)du
(用u=t+a代换)
=∫(2a,x+a)F'(u)du
(∵F'(x)=f(x))
=[F(u)]|(2a,x+a)
=F(x+a)-F(2a)
(5)原式=1/2∫(0,1)e^(x²)d(x²)
=1/2[e^(x²)]|(0,1)
=1/2(e-1)
(6)原式=∫(1,e)lnxdx
=(xlnx)|(1,e)-∫(1,e)dx
(应用分部积分法)
=(e-0)-(e-1)
=1
(7)原式=(-xcosx)|(0,π/2)+∫(0,π/2)cosxdx
(应用分部积分法)
=(0-0)+(sinx)|(0,π/2)
=1-0
=1
=(1/2ln|2x-1|)|(1,2)
=1/2(ln3-0)
=1/2ln3
(2)∵∫(0,1)(2x+k)dx=(x²+kx)|(0,1)=1+k
又∫(0,1)(2x+k)dx=2
∴1+k=2
故k=1
(3)原式=∫(0,1)2t²dt/(t²+1)
(用t=√(e^x-1)代换)
=2∫(0,1)[1-1/(t²+1)]dt
=2(t-arctant)|(0,1)
=2(1-π/4)
=2-π/2
(4)原式=∫(a,x)f(t+a)d(t+a)
=∫(2a,x+a)f(u)du
(用u=t+a代换)
=∫(2a,x+a)F'(u)du
(∵F'(x)=f(x))
=[F(u)]|(2a,x+a)
=F(x+a)-F(2a)
(5)原式=1/2∫(0,1)e^(x²)d(x²)
=1/2[e^(x²)]|(0,1)
=1/2(e-1)
(6)原式=∫(1,e)lnxdx
=(xlnx)|(1,e)-∫(1,e)dx
(应用分部积分法)
=(e-0)-(e-1)
=1
(7)原式=(-xcosx)|(0,π/2)+∫(0,π/2)cosxdx
(应用分部积分法)
=(0-0)+(sinx)|(0,π/2)
=1-0
=1
展开全部
解:设lnx=t,则当x=1时,t-0.当x=e^(π/2)时,t=π/2
∴原式=∫(0,π/2)e^tsintdt (∫(0,π/2)表示从0到π/2积分)
为了求解方便,设I=∫(0,π/2)e^tsintdt
∵I=(e^tsintdt)|(0,π/2)-∫(0,π/2)e^tcostdt (应用分部积分)
==>I=e^(π/2)-(e^tcost)|(0,π/2)-∫(0,π/2)e^tcostdt (应用分部积分)
==>I=e^(π/2)+1-I (∵I=∫(0,π/2)e^tsintdt)
==>2I=e^(π/2)+1
==>I=[e^(π/2)+1]/2
∴原式=[e^(π/2)+1]/2.
∴原式=∫(0,π/2)e^tsintdt (∫(0,π/2)表示从0到π/2积分)
为了求解方便,设I=∫(0,π/2)e^tsintdt
∵I=(e^tsintdt)|(0,π/2)-∫(0,π/2)e^tcostdt (应用分部积分)
==>I=e^(π/2)-(e^tcost)|(0,π/2)-∫(0,π/2)e^tcostdt (应用分部积分)
==>I=e^(π/2)+1-I (∵I=∫(0,π/2)e^tsintdt)
==>2I=e^(π/2)+1
==>I=[e^(π/2)+1]/2
∴原式=[e^(π/2)+1]/2.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用换元法,先求不定积分,定积分用牛顿莱布尼兹公式自己带,
令x=tant,则dx=(sect)^2
dt,积分限由x
的1到根号3变为t的π/4到π/3,
原式=∫(sect)^2/[(tant)^2]*sect
dt
=∫cost/(sint)^2
dt
=∫1/(sint)^2
d(sint)
(凑微分)(此形式相当于∫1/x^2
dx)
=
-
1/sint
+c
令x=tant,则dx=(sect)^2
dt,积分限由x
的1到根号3变为t的π/4到π/3,
原式=∫(sect)^2/[(tant)^2]*sect
dt
=∫cost/(sint)^2
dt
=∫1/(sint)^2
d(sint)
(凑微分)(此形式相当于∫1/x^2
dx)
=
-
1/sint
+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询