方程x^2-px-1/(2p^2) =0的两根x1,x2满足x1^4+x2^4≤2+√2,则p=多少(p∈R) 10
2个回答
展开全部
x^2-px-1/(2p^2) =0,
——》x1+x2=p,x1*x2=-1/(2p^2),
——》x1^2+x2^2=(x1+x2)^2-2x1x2=p^2+1/p^2,
——》x1^4+x2^2=(x1^2+x2^2)^2-2x1^2*x2^2=p^4+1/(2p^4)+2<=2+√2,
——》p^4+1/(2p^4)<=√2,
——》[p^2-1/(√2p^2)]<=0,
——》p^2=1/(√2p^2),
——》p^4=√2/2=2^(-1/2),
——》p^2=2^(-1/4),
——》p=+-2^(-1/8)。
——》x1+x2=p,x1*x2=-1/(2p^2),
——》x1^2+x2^2=(x1+x2)^2-2x1x2=p^2+1/p^2,
——》x1^4+x2^2=(x1^2+x2^2)^2-2x1^2*x2^2=p^4+1/(2p^4)+2<=2+√2,
——》p^4+1/(2p^4)<=√2,
——》[p^2-1/(√2p^2)]<=0,
——》p^2=1/(√2p^2),
——》p^4=√2/2=2^(-1/2),
——》p^2=2^(-1/4),
——》p=+-2^(-1/8)。
展开全部
算了好几遍,得数是√[√2 +√(2+√2)]/2^(1/4) 但是方法是这样。如果按(1/2)^(1/8)算,x1和x2都是虚数。要么你再算算看是哪个数字有问题。
先求两根,两根分别是(p±√p^2-2/p^2)/2=p/2±(√p^2-2/p^2)/2
设a=p/2 b=(√p^2-2/p^2)/2
x1^4+x2^4 =(a+b)^4+(a-b)^4 =2(a^4 +6a^2b^2 +b^4)
=(1/8)[p^4 +6p^2(p^2-2/p^2) +(p^2-2/p^2)^2]
=(1/8)(p^4 +6p^4 -12 +p^4 -4 +4/p^4)
=p^4 -2 +1/(2p^4) ≤2+√2
-----
因为[p^2 - 1/(√2)p^2]^2 = p^4 -√2 +1/(2p^4)
=x1^4+x2^4 +(2-√2)
所以:[p^2 -1/(√2)p^2)]^2 ≤2+√2+(2-√2)=4
p^2 - 1/(√2)p^2≤2 p^2-2 ≤1/(√2)p^2
乘以p^2得 p^4 -2p^2 ≤1/√2
(p^2-1)^2 ≤ (2+√2)/2
p^2-1 ≤ √(2+√2)/√2
p^2 ≤ [√2 +√(2+√2)]/√2
p ≤ √[√2 +√(2+√2)] /2^(1/4)
---
先求两根,两根分别是(p±√p^2-2/p^2)/2=p/2±(√p^2-2/p^2)/2
设a=p/2 b=(√p^2-2/p^2)/2
x1^4+x2^4 =(a+b)^4+(a-b)^4 =2(a^4 +6a^2b^2 +b^4)
=(1/8)[p^4 +6p^2(p^2-2/p^2) +(p^2-2/p^2)^2]
=(1/8)(p^4 +6p^4 -12 +p^4 -4 +4/p^4)
=p^4 -2 +1/(2p^4) ≤2+√2
-----
因为[p^2 - 1/(√2)p^2]^2 = p^4 -√2 +1/(2p^4)
=x1^4+x2^4 +(2-√2)
所以:[p^2 -1/(√2)p^2)]^2 ≤2+√2+(2-√2)=4
p^2 - 1/(√2)p^2≤2 p^2-2 ≤1/(√2)p^2
乘以p^2得 p^4 -2p^2 ≤1/√2
(p^2-1)^2 ≤ (2+√2)/2
p^2-1 ≤ √(2+√2)/√2
p^2 ≤ [√2 +√(2+√2)]/√2
p ≤ √[√2 +√(2+√2)] /2^(1/4)
---
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询