线性代数求过渡矩阵这三种情况各举一个例子谢谢😁
2个回答
展开全部
过渡矩阵有两种求法,第一是基变换公式,第二个是坐标变换公式。
如果过度矩阵是设成A,那么就在基变换当中,从基αi到基βi就的矩阵就是过度矩阵(i=1,2,3,4),要写成βi=αiA,αi写在前面,其实就是让βi被αi线性表出。
如两个不共线(线性无关)的三维向量可以作为这两个向量所在平面(二维向量空间)的一组基,这个平面(二维向量空间)是R3的一个子空间。当然在这个二维空间的线性无关的两个三维向量都可以是这个二维空间的一组基。
概念
线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。
含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询