用微分中值定理来证明

david940408
2013-11-13 · TA获得超过5554个赞
知道大有可为答主
回答量:2964
采纳率:100%
帮助的人:1690万
展开全部
令f(x)=lnx/x (x>0)
则(f(π)-f(e))/(π-e)=f'(c)=(1-lnc)/c^2<0 (e<c<π)
所以f(π)/f(e)
即lnπ/π<lne/e
即e^π>π^e
更多追问追答
追问
牛逼啊。
追答
其实只是化了一下,变成证明lnπ/π<lne/e,然后用高中的办法而已。。。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式