求大神解答!一道题也行!但最好全部!要过程!谢谢!
1.1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+···+1/(1+2+3+4+···+10)2.1/(2×5)+1/(5×8)+1/(8×11)+··...
1.1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+···+1/(1+2+3+4+···+10)
2.1/(2×5)+1/(5×8)+1/(8×11)+···+1/(97×100)
3.(2+1/4×1)+(2+1/4×2)+(2+1/4×3)+···+(2+1/4×11) 展开
2.1/(2×5)+1/(5×8)+1/(8×11)+···+1/(97×100)
3.(2+1/4×1)+(2+1/4×2)+(2+1/4×3)+···+(2+1/4×11) 展开
3个回答
展开全部
解:你学过等差数列吗?按照等差数列可以解第一题和第三题。
第一题,可以看出每一项的分母都是一个等差为1的数列的和。等差数列求和公式=n(a1+an)/2。
而a1=1,an=n,所以分母项=n(1+n)/2,于是第一题各项就等于2/n(n+1)=2(1/n-1/(n+1))。
将各项拆分,再相加,于是第一题=1+2(1/2-1/11)=20/11。
第二题,可以直接将各项拆开,原式=3×(1/2-1/5+1/5-1/8+.........-1/100)=147/100。
第三题,观察可发现各项等差为1/4,a1=9/4,a11=19/4的等差数列求和。
于是原式=n(a1+a11)/2=11×(9/4+19/4)/2=77/2。
第一题,可以看出每一项的分母都是一个等差为1的数列的和。等差数列求和公式=n(a1+an)/2。
而a1=1,an=n,所以分母项=n(1+n)/2,于是第一题各项就等于2/n(n+1)=2(1/n-1/(n+1))。
将各项拆分,再相加,于是第一题=1+2(1/2-1/11)=20/11。
第二题,可以直接将各项拆开,原式=3×(1/2-1/5+1/5-1/8+.........-1/100)=147/100。
第三题,观察可发现各项等差为1/4,a1=9/4,a11=19/4的等差数列求和。
于是原式=n(a1+a11)/2=11×(9/4+19/4)/2=77/2。
展开全部
2. 1/3(1/2-1/5)+1/3(1/5-1/8)+...+1/3(1/97-1/100)
=1/3(1/2-1/5+1/5-1/8+1/8....+1/97-1/100)
=1/3(1/2+0+0+...-1/100)
=49/300
=1/3(1/2-1/5+1/5-1/8+1/8....+1/97-1/100)
=1/3(1/2+0+0+...-1/100)
=49/300
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、原式=2*(1/2-1/110)
=54/55
2、原式=1/3*(1/2-1/100)
=1/3*49/100
=49/300
3、原式=2*11+1/4*(1+1/2+……+1/11)
=22+1/4*(不会了自己算吧)
=54/55
2、原式=1/3*(1/2-1/100)
=1/3*49/100
=49/300
3、原式=2*11+1/4*(1+1/2+……+1/11)
=22+1/4*(不会了自己算吧)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询