初三数学应用题
展开全部
1)小华的问题解答:
解析:(1)解:设实现每天800元利润的定价为x元/个,根据题意,得
(x-2)(500- ×10)=800 .………………………(2分)
整理得:x2-10x+24=0.
解之得:x1=4,x2=6.………………………(3分)
∵物价局规定,售价不能超过进价的240%,即2×240%=4.8(元).
∴x2=6不合题意,舍去,得x=4.
答:应定价4元/个,才可获得800元的利润.………………………(4分)
(2)解:设每天利润为W元,定价为x元/个,得
W=(x-2)(500- ×10)
=-100x2+1000x-1600
=-100(x-5)2+900.………………………(6分)
∵x≤5时W随x的增大而增大,且x≤4.8,
∴当x=4.8 时,W最大,
W最大=-100×(4.8-5)2+900=896>800 .………………………(7分)
故800元不是最大利润.当定价为4.8元/个时,每天利润最大.………………………(8分)
同类型的,希望嫩帮到你,你这题的答案我就不直接告诉你了,数学就得自己琢磨
解析:(1)解:设实现每天800元利润的定价为x元/个,根据题意,得
(x-2)(500- ×10)=800 .………………………(2分)
整理得:x2-10x+24=0.
解之得:x1=4,x2=6.………………………(3分)
∵物价局规定,售价不能超过进价的240%,即2×240%=4.8(元).
∴x2=6不合题意,舍去,得x=4.
答:应定价4元/个,才可获得800元的利润.………………………(4分)
(2)解:设每天利润为W元,定价为x元/个,得
W=(x-2)(500- ×10)
=-100x2+1000x-1600
=-100(x-5)2+900.………………………(6分)
∵x≤5时W随x的增大而增大,且x≤4.8,
∴当x=4.8 时,W最大,
W最大=-100×(4.8-5)2+900=896>800 .………………………(7分)
故800元不是最大利润.当定价为4.8元/个时,每天利润最大.………………………(8分)
同类型的,希望嫩帮到你,你这题的答案我就不直接告诉你了,数学就得自己琢磨
展开全部
假设粽子定价为x元,那么每个粽子的利润为(x-2),此时每天能卖出的粽子个数为[400-(x-3)/0.1*10],故总利润方程为(x-2)*[400-(x-3)/0.1*10]=600,求解得x=4或者5。由于物价不能超过进价的240%,故x=5舍去
由1可知,总利润y=(x-2)*[400-(x-3)/0.1*10]=-100x^2+900-1400,当x=4.5时,y有最大值,此时利润最大。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我现在上六年级,不了解,可能帮不了你
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询