已知数列{an}的前项和Sn=n²+2n。
(1)求数列的通项公式an;(2)设Tn=1/a1a2+1/a2a3+1/a3a4+L+1/anan+1,问Tn>1/8对最小正整数n是多少?求详细解答过程。谢谢!...
(1)求数列的通项公式an;
(2)设Tn=1/a1a2+1/a2a3+1/a3a4+L+1/anan+1,问Tn>1/8对最小正整数n是多少?
求详细解答过程。谢谢! 展开
(2)设Tn=1/a1a2+1/a2a3+1/a3a4+L+1/anan+1,问Tn>1/8对最小正整数n是多少?
求详细解答过程。谢谢! 展开
4个回答
展开全部
(1)
Sn=n²+2n
当n=1时,a1=S1=3
当n≥2时,an=Sn-S(n-1)
=n²+2n-(n-1)²-2(n-1)
=2n+1
上式对n=1也成立
因此通项公式为
an=2n+1
(2)
Tn=1/a1a2+1/a2a3+1/a3a4+L+1/anan+1
=1/(3*5)+1/(5*7)+1/(7*9)1+....+1/[(2n+1)(2n++3)]
=1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+....+1/2[1/(2n+1)-1/(2n+3)]
=1/2[1/3-1/(2n+3)]
若Tn>1/8
则1/2[1/3-1/(2n+3)]>1/8
∴1/(2n+3)<1/12
∴2n+3>12
n>9/2 ,n≥5
满足条件的最小正整数为5
Sn=n²+2n
当n=1时,a1=S1=3
当n≥2时,an=Sn-S(n-1)
=n²+2n-(n-1)²-2(n-1)
=2n+1
上式对n=1也成立
因此通项公式为
an=2n+1
(2)
Tn=1/a1a2+1/a2a3+1/a3a4+L+1/anan+1
=1/(3*5)+1/(5*7)+1/(7*9)1+....+1/[(2n+1)(2n++3)]
=1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+....+1/2[1/(2n+1)-1/(2n+3)]
=1/2[1/3-1/(2n+3)]
若Tn>1/8
则1/2[1/3-1/(2n+3)]>1/8
∴1/(2n+3)<1/12
∴2n+3>12
n>9/2 ,n≥5
满足条件的最小正整数为5
展开全部
解:
(1)
n=1时,a1=S1=1²+2×1=3
n≥2时,an=Sn-S(n-1)=n²+2n-[(n-1)²+2(n-1)]=2n+1
n=1时,a1=2×1+1=3,同样满足通项公式
数列{an}的通项公式为an=2n+1
(2)
1/[ana(n+1)]=1/[(2n+1)(2(n+1)+1)]=(1/2)[1/(2n+1)-1/(2(n+1)+1)]
Tn=1/(a1a2)+1/(a2a3)+...+1/[ana(n+1)]
=(1/2)[1/(2×1+1)-1/(2×2+1)+1/(2×2+1)-1/(2×3+1)+...+1/(2n+1)-1/(2(n+1)+1)]
=(1/2)[1/3 -1/(2n+3)]
=n/(6n+9)
Tn>1/8
n/(6n+9)>1/8
8n>6n+9
2n>9
n>4.5
n为正整数,n≥5,满足不等式成立的最小正整数n的值为5。
(1)
n=1时,a1=S1=1²+2×1=3
n≥2时,an=Sn-S(n-1)=n²+2n-[(n-1)²+2(n-1)]=2n+1
n=1时,a1=2×1+1=3,同样满足通项公式
数列{an}的通项公式为an=2n+1
(2)
1/[ana(n+1)]=1/[(2n+1)(2(n+1)+1)]=(1/2)[1/(2n+1)-1/(2(n+1)+1)]
Tn=1/(a1a2)+1/(a2a3)+...+1/[ana(n+1)]
=(1/2)[1/(2×1+1)-1/(2×2+1)+1/(2×2+1)-1/(2×3+1)+...+1/(2n+1)-1/(2(n+1)+1)]
=(1/2)[1/3 -1/(2n+3)]
=n/(6n+9)
Tn>1/8
n/(6n+9)>1/8
8n>6n+9
2n>9
n>4.5
n为正整数,n≥5,满足不等式成立的最小正整数n的值为5。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.Sn-1=(n-1)²+2(n-1)
An=Sn-Sn-1=2n+1
2.1/a1a2=1/(3*5)=1/2*(1/3-1/5)
1/a2a3=1/(5*7)=1/2*(1/5-1/7)
……
1/anan+1=1/2*(1/an-1/an+1)
所以TN=1/2(1/3-1/an+1)
令Tn>1/8即1/2(1/3-1/an+1)>1/8
1/12>1/an+1=1/2n+3
所以n最小为5
An=Sn-Sn-1=2n+1
2.1/a1a2=1/(3*5)=1/2*(1/3-1/5)
1/a2a3=1/(5*7)=1/2*(1/5-1/7)
……
1/anan+1=1/2*(1/an-1/an+1)
所以TN=1/2(1/3-1/an+1)
令Tn>1/8即1/2(1/3-1/an+1)>1/8
1/12>1/an+1=1/2n+3
所以n最小为5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询