答:(1/2)[ sin(1) - sin(4) + 3cos(1) ]
先解出交点:
y = x,y = 2,x = y³
即(1,1),(2,2),(8,2)
从区域看来,Y型区域比较方便,不用分段计算
∫∫_(D) sin(x/y) dxdy
= ∫(1,2) dy ∫(y,y³) sin(x/y) dx
= ∫(1,2) - ycos(x/y)|(y,y³) dy
= ∫(1,2) y[ cos(1)-cos(y²) ] dy
= [ cos(1)*y²/2 - sin(y²)/2 ]|(1,2)
= (1/2)[ sin(1) - sin(4) + 3cos(1) ]
积分区域如图: