忽略我写的
10个回答
2014-10-06
展开全部
1/(1+2)+1/(2+3)+1/(3+4)+...+1/(2003+2004)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/2003-1/2004)
=1-1/2004
=2003/2004
1/(√1+√2)+1/(√2+√3)+1/(√3+√4)+...+1/(√2003+√2004)
=(√2-√1)/(2-1)+(√3-√2)/(3-2)+……+(√2004-√2003)/(2004-2003)
=(√2-√1)+(√3-√2)+……+(√2004-√2003)
=√2004-1
=2√501-1
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/2003-1/2004)
=1-1/2004
=2003/2004
1/(√1+√2)+1/(√2+√3)+1/(√3+√4)+...+1/(√2003+√2004)
=(√2-√1)/(2-1)+(√3-√2)/(3-2)+……+(√2004-√2003)/(2004-2003)
=(√2-√1)+(√3-√2)+……+(√2004-√2003)
=√2004-1
=2√501-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询