2个回答
展开全部
首先可以证明a1+a2,a2+a3,a3+a4线性无关,从而dimW1=3,而dimW2=1
(1)W1+W2是由W1的基和W2的基共同生成的向量空间,它的维数等于W1的基与W2的基合起来组成的向量组的秩。即dim(W1+W2)=rank(a1+a2,a2+a3,a3+a4,a4+a1)=3(可任取这四个向量中的三个,证明它们线性无关且剩余的第四个向量可由它们线性表出)
(2)可直接利用(1)的结果,得dim(W1∩W2)
=dimW1+dimW2-dim(W1+W2)=3+1-3=1
(1)W1+W2是由W1的基和W2的基共同生成的向量空间,它的维数等于W1的基与W2的基合起来组成的向量组的秩。即dim(W1+W2)=rank(a1+a2,a2+a3,a3+a4,a4+a1)=3(可任取这四个向量中的三个,证明它们线性无关且剩余的第四个向量可由它们线性表出)
(2)可直接利用(1)的结果,得dim(W1∩W2)
=dimW1+dimW2-dim(W1+W2)=3+1-3=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询