定义在R上的函数f(x)满足:f(x+y)=f(x)f(y),且当x>0时,f(x)>1.(1)求f(0)的值,并证明

定义在R上的函数f(x)满足:f(x+y)=f(x)f(y),且当x>0时,f(x)>1.(1)求f(0)的值,并证明f(x)是定义域上的增函数:(2)数列{an}满足a... 定义在R上的函数f(x)满足:f(x+y)=f(x)f(y),且当x>0时,f(x)>1.(1)求f(0)的值,并证明f(x)是定义域上的增函数:(2)数列{an}满足a1=a≠0,f(an+1)=f(aan)f(a-1)(n=1,2,3,…),求数列{an}的通项公式及前n项和Sn. 展开
 我来答
加菲18日138
2014-11-16 · TA获得超过113个赞
知道答主
回答量:111
采纳率:0%
帮助的人:132万
展开全部
(1)在 f(x+y)=f(x)f(y)中,令 x=1,y=0,可得f(1)=f(1)f(0).再由f(1)>1,可得f(0)=1.
当x<0时,f(x-x)=f(0)=f(x)f(-x)=1,由-x>0 可得f(-x)>1,f(x)=
1
f(?x)
∈(0,1).
当x>0时,同理可得f(x)>0.  综上可得,当x∈R时,f(x)>0.
设x1<x2,则 f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x1-x2)f(x2)-f(x2)=f(x2)[f(x1-x2)-1].
由x1-x2<0,x<0时,0<f(x)<1,可得  f(x1-x2)-1<0,
∴f(x1)-f(x2)<0,f(x1)<f(x2),
故f(x)是定义域上的增函数.
(2)数列{an}满足a1=a≠0,f(an+1)=f(aan)f(a-1)=f[(aan)+(a-1)],
由f(x)是定义域R上的增函数,可得an+1=aan +a-1,即an+1+1=a(an +1),故{an +1}是以a+1为首项,以a为公比的等比数列.
故 an +1=(a+1)an-1,故 an =(a+1)an-1-1.
故{an }的前n项和sn=(a+1)(1+a+a2+a3+…+an-1)-n=
na  , a=1
(a+1)(1?an)
1?a
  ,  a≠1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式