如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折

如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以... 如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm 2 ?若存在,请求出所有满足条件的t的值;若不存在,请说明理由. 展开
 我来答
小鬁
推荐于2016-12-01 · TA获得超过119个赞
知道答主
回答量:108
采纳率:0%
帮助的人:142万
展开全部
(1)16;(2) ;(3) .


试题分析:(1)过点A作AM⊥CD于M,根据勾股定理,可以求出DM=6所以DC=16.
(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图示,由题可得:BP=10-3t,DQ=2t,所以可以列出方程10-3t=2t,解得t=2,此时,BP=DQ=4,CQ=12,在△CBQ中,根据勾股定理,求出BQ即可.
(3)此题要分三种情况进行讨论:即①当点P在线段AB上,②当点P在线段BC上,③当点P在线段CD上,根据三种情况点的位置,可以确定t的值.
(1)如图,过点A作AM⊥CD于M,
根据勾股定理,AD=10,AM=BC=8,
.∴CD=16.

(2)当四边形PBQD为平行四边形时,
点P在AB上,点Q在DC上,如图,
由题知:BP=10-3t,DQ=2t,∴10-3t=2t,解得t=2.
此时,BP=DQ=4,CQ=12,∴ .
∴四边形PBQD的周长=2(BP+BQ)= .

(3)①当点P在线段AB上时,即 时,如图,
,解得 .

②当点P在线段BC上时,即 时,如图,BP=3t-10,CQ=16-2t,
,化简得:3t 2 -34t+100=0,△=-44<0,
∴方程无实数解.

③当点P在线段CD上时,
若点P在Q的右侧,即 ,则有PQ=34-5t,
,解得 <6,舍去.
若点P在Q的左侧,即 ,则有PQ=5t-34,
,解得 .
综上所述,满足条件的t存在,其值分别为 .
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式