如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折
如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以...
如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm 2 ?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.
展开
小鬁
推荐于2016-12-01
·
TA获得超过119个赞
关注
(1)16;(2) ;(3) . |
试题分析:(1)过点A作AM⊥CD于M,根据勾股定理,可以求出DM=6所以DC=16. (2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图示,由题可得:BP=10-3t,DQ=2t,所以可以列出方程10-3t=2t,解得t=2,此时,BP=DQ=4,CQ=12,在△CBQ中,根据勾股定理,求出BQ即可. (3)此题要分三种情况进行讨论:即①当点P在线段AB上,②当点P在线段BC上,③当点P在线段CD上,根据三种情况点的位置,可以确定t的值. (1)如图,过点A作AM⊥CD于M, 根据勾股定理,AD=10,AM=BC=8, ∴ .∴CD=16. (2)当四边形PBQD为平行四边形时, 点P在AB上,点Q在DC上,如图, 由题知:BP=10-3t,DQ=2t,∴10-3t=2t,解得t=2. 此时,BP=DQ=4,CQ=12,∴ . ∴四边形PBQD的周长=2(BP+BQ)= . (3)①当点P在线段AB上时,即 时,如图, ,解得 . ②当点P在线段BC上时,即 时,如图,BP=3t-10,CQ=16-2t, ∴ ,化简得:3t 2 -34t+100=0,△=-44<0, ∴方程无实数解. ③当点P在线段CD上时, 若点P在Q的右侧,即 ,则有PQ=34-5t, ,解得 <6,舍去. 若点P在Q的左侧,即 ,则有PQ=5t-34, ,解得 . 综上所述,满足条件的t存在,其值分别为 . |
收起
为你推荐: