如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,B、C两点的坐标分别为B(1,0)

如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,B、C两点的坐标分别为B(1,0)、C(0,3),且当x=-10和x=8时函数的值... 如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,B、C两点的坐标分别为B(1,0)、C(0,3),且当x=-10和x=8时函数的值y相等.(1)求a、b、c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.连接MN,将△BMN沿MN翻折,当运动时间为几秒时,B点恰好落在AC边上的P处?并求点P的坐标;(3)上下平移该抛物线得到新的抛物线,设新抛物线的顶点为D,对称轴与x轴的交点为E,若△ODE与△OBC相似,求新抛物线的解析式. 展开
 我来答
新716
推荐于2016-04-08 · 超过62用户采纳过TA的回答
知道答主
回答量:118
采纳率:0%
帮助的人:115万
展开全部
解:(1)∵当x=-10和x=8时函数的值y相等,
∴抛物线的对称轴为直线x=-1.
由题意得:a+b+c=0,c=
3
-
b
2a
=-1

a=-
3
3
,b=-
2
3
3
,c=
3
;(3分)

(2)令y=0,则x=-3或1,∴A(-3,0),
易得AC=2
3
,BC=2,AB=4

∴△ABC为直角三角形,∠ACB=90°,∠A=30°,∠B=60°,(1分)
∴BM=BN=PN=PM,
∴四边形BNPM为菱形,
∴PM=BN.
设运动t秒后点B在AC上,
∵PN∥AB,
PN
AB
=
CN
CB
,即
t
4
=
2-t
2
,∴t=
4
3
.(1分)
∴PM=BN=
4
3

过P作PE⊥AB于E,
在Rt△PEM中,PE=
4
3
sin60°=
2
3
3

∴OM=BM-OB=
4
3
-1=
1
3
,OE=1.
∴P(-1,
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消