如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;...
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标;(3)在(2)的条件下,在x轴上找一点P,使得△APM是等腰三角形,请直接写出所有符合条件的点P的坐标.
展开
1个回答
展开全部
(1)∵抛物线的对称轴为x=1,且A(-1,0),
∴B(3,0);
可设抛物线的解析式为y=a(x+1)(x-3),由于抛物线经过C(0,-3),
则有:a(0+1)(0-3)=-3,a=1;
∴y=(x+1)(x-3)=x2-2x-3;
(2)由于A、B关于抛物线的对称轴直线x=1对称,
那么M点为直线BC与x=1的交点;
由于直线BC经过C(0,-3),可设其解析式为y=kx-3,
则有:3k-3=0,k=1;
∴直线BC的解析式为y=x-3;
当x=1时,y=x-3=-2,
即M(1,-2);
(3)∵A(-1,0),M(1,-2),
∴AM=2
,
∴当AM=AP2=2
时,
则P2(2
-1,0),
当PM=AM时,P(3,0),
当AP3=AM时,则P3(-2
-1,0),
当AP1=MP1时,则P1(1,0),
综上所述:符合题意的P点坐标为:(2
-1,0),(3,0),(-2
-1,0),(1,0).
∴B(3,0);
可设抛物线的解析式为y=a(x+1)(x-3),由于抛物线经过C(0,-3),
则有:a(0+1)(0-3)=-3,a=1;
∴y=(x+1)(x-3)=x2-2x-3;
(2)由于A、B关于抛物线的对称轴直线x=1对称,
那么M点为直线BC与x=1的交点;
由于直线BC经过C(0,-3),可设其解析式为y=kx-3,
则有:3k-3=0,k=1;
∴直线BC的解析式为y=x-3;
当x=1时,y=x-3=-2,
即M(1,-2);
(3)∵A(-1,0),M(1,-2),
∴AM=2
2 |
∴当AM=AP2=2
2 |
则P2(2
2 |
当PM=AM时,P(3,0),
当AP3=AM时,则P3(-2
2 |
当AP1=MP1时,则P1(1,0),
综上所述:符合题意的P点坐标为:(2
2 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询