(2011?茂名)如图,在等腰△ABC中,点D、E分别是两腰AC、BC上的点,连接AE、BD相交于点O,∠1=∠2.(1
(2011?茂名)如图,在等腰△ABC中,点D、E分别是两腰AC、BC上的点,连接AE、BD相交于点O,∠1=∠2.(1)求证:OD=OE;(2)求证:四边形ABED是等...
(2011?茂名)如图,在等腰△ABC中,点D、E分别是两腰AC、BC上的点,连接AE、BD相交于点O,∠1=∠2.(1)求证:OD=OE;(2)求证:四边形ABED是等腰梯形;(3)若AB=3DE,△DCE的面积为2,求四边形ABED的面积.
展开
1个回答
展开全部
(1)证明:如图,∵△ABC是等腰三角形,
∴AC=BC,
∴∠BAD=∠ABE,
又∵AB=BA、∠2=∠1,
∴△ABD≌△BAE(ASA),
∴BD=AE,
又∵∠1=∠2,
∴OA=OB,
∴BD-OB=AE-OA,
即:OD=OE;
(2)证明:由①得OD=OE,
∴∠DOE=∠BOA,
=
,
∴△DOE∽△BOA,
∴∠EDO=∠ABO,
∴DE∥AB,
又∵∠DAB=∠EBA,
∴四边形ABEO为等腰梯形;
(3)解:由(2)可知:DE∥AB,
∴∠CED=∠CBA,∠CDE=∠CAB,
∴△DCE∽△ACB(AA),
∴
=(
)2,
即
=(
)2=
.
∴S△ACB=18,
∴S四边形ABED=S△ACB-S△DCE=18-2=16.
∴AC=BC,
∴∠BAD=∠ABE,
又∵AB=BA、∠2=∠1,
∴△ABD≌△BAE(ASA),
∴BD=AE,
又∵∠1=∠2,
∴OA=OB,
∴BD-OB=AE-OA,
即:OD=OE;
(2)证明:由①得OD=OE,
∴∠DOE=∠BOA,
DO |
BO |
EO |
AO |
∴△DOE∽△BOA,
∴∠EDO=∠ABO,
∴DE∥AB,
又∵∠DAB=∠EBA,
∴四边形ABEO为等腰梯形;
(3)解:由(2)可知:DE∥AB,
∴∠CED=∠CBA,∠CDE=∠CAB,
∴△DCE∽△ACB(AA),
∴
S△DCE |
S△ACB |
DE |
AB |
即
2 |
S△ACB |
DE |
3DE |
1 |
9 |
∴S△ACB=18,
∴S四边形ABED=S△ACB-S△DCE=18-2=16.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询